首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human lysozyme and hen egg-white lysozyme have antibacterial, antiviral, and antifungal properties with numerous potential commercial applications. Currently, hen egg-white lysozyme dominates low cost applications but the recent high-level expression of human lysozyme in rice could provide an economical source of lysozyme. This work compares human lysozyme and hen egg-white lysozyme adsorption to the cation exchange resin, SP-Sepharose FF, and the effect of rice extract components on lysozyme purification. With one exception, the dynamic binding capacities of human lysozyme were lower than those of hen egg-white at pH 4.5, 6, and 7.5 with ionic strengths ranging from 0 to 100 mM (5-20 mS). Ionic strength and pH had a similar effect on the adsorption capacities, but human lysozyme was more sensitive to these two factors than hen egg-white lysozyme. In the presence of rice extract, the dynamic binding capacities of human and hen egg-white lysozymes were reduced by 20-30% and by 32-39% at pH 6. Hen egg-white lysozyme was used as a benchmark to compare the effectiveness of human lysozyme purification from transgenic rice extract. Process simulation and cost analyses for human lysozyme purification from rice and hen egg-white lysozyme purification from egg-white resulted in similar unit production costs at 1 ton per year scale.  相似文献   

2.
Bombyx mori lysozyme (BmLZ), from the silkworm, is an insect lysozyme. BmLZ has considerable activity at low temperatures and low activation energies compared with those of hen egg white lysozyme (HEWLZ), according to measurements of the temperature dependencies of relative activity (lytic and glycol chitin) and the estimation of activation energies using the Arrhenius equation. Being so active at low temperatures and low activation energies is characteristic of psychrophilic (cold-adapted) enzymes. The three-dimensional structure of BmLZ has been determined by X-ray crystallography at 2.5 A resolution. The core structure of BmLZ is similar to that of c-type lysozymes. However, BmLZ shows some distinct differences in the two exposed loops and the C-terminal region. A detailed comparison of BmLZ and HEWLZ suggests structural rationalizations for the differences in the catalytic efficiency, stability, and mode of activity between these two lysozymes.  相似文献   

3.
A spin-label assay for lysozyme, which is based on the enzymatic hydrolysis of spin-labeled peptidoglycan, is described. Hydrolysis of this polymer by lysozyme results in sharpening of the esr spectrum. The rate of spectral sharpening is a function of enzyme concentration. When the activities of hen egg-white and human lysozymes are compared by this method, human lysozyme is 3.5 times as active as the hen enzyme. The pH optima for both enzymes are pH 5.0. At this pH, the maximal activity for the hen egg-white lysozyme is observed at an ionic strength of 0.09. This assay is suitable for measuring lysozyme levels in biological fluids. It is a sensitive, continuous assay that measures muramidase activity on a defined substrate.  相似文献   

4.
Human airway lysozyme, purified from pathological bronchial secretions, is characterized by a specific activity 3-fold higher than that of hen egg-white lysozyme. The amino acid composition of human airway lysozyme is identical to that of other human lysozymes. The laser Raman spectra of human airway lysozyme and hen egg-white lysozyme in phosphate buffer solution (pH 7.2) are recorded in the range 300-1900 cm-1 at 488 nm. Drastic intensity differences are observed between the spectra analyzed in the ranges characteristic of the peptide backbone (e.g., beta-sheet; C alpha-C, C alpha-N), and of the aromatic side-chain vibrations (tyrosine, tryptophan). The deconvolution of the Raman amide I band gives secondary structures of 38% and 39% alpha-helix, 25% and 20% beta-sheet, and 37% and 41% undefined structure for the human and hen lysozymes, respectively.  相似文献   

5.
The lysozyme (rabbit kidney lysozyme) from the homogenate of rabbit kidney (Japanese white) was purified by repeated cation-exchange chromatography on Bio-Rex 70. The amino acid sequence was determined by automated gas-phase Edman degradation of the peptides obtained from the digestion of reduced and S-carboxymethylated rabbit lysozyme with Achromobacter protease I (lysyl endopeptidase). The sequence thus determined was KIYERCELARTLKKLGLDGYKGVSLANWMCLAKWESSYNTRATNYNPGDKSTDYGIFQ INSRYWCNDGKTPRAVNACHIPCSDLLKDDITQAVACAKRVVSDPQGIRAWVAWRNHCQ NQDLTPYIRGCGV, indicating 25 amino acid substitutions from human lysozyme. The lytic activity of rabbit lysozyme against Micrococcus lysodeikticus at pH 7, ionic strength of 0.1, and 30 degrees C was found to be 190 and 60% of those of hen and human lysozymes, respectively. The lytic activity-pH profile of rabbit lysozyme was slightly different from those of hen and human lysozymes. While hen and human lysozymes had wide optimum activities at around pH 5.5-8.5, the optimum activity of rabbit lysozyme was at around pH 5.5-7.0. The high proline content (five residues per molecule compared with two prolines per molecule in hen or human lysozyme) is one of the interesting features of rabbit lysozyme. The transition temperatures for the unfolding of rabbit, human, and hen lysozymes in 3 M guanidine hydrochloride at pH 5.5 were 51.2, 45.5, and 45.4 degrees C, respectively, indicating that rabbit lysozyme is stabler than the other two lysozymes. The high proline content may be responsible for the increased stability of rabbit lysozyme.  相似文献   

6.
Human lysozyme has a structure similar to that of hen lysozyme and differs in amino acid sequence by 51 out of 129 residues with one insertion at the position between 47 and 48 in hen lysozyme. The backbone dynamics of free or (NAG)3-bound human lysozyme has been determined by measurements of 15N nuclear relaxation. The relaxation data were analyzed using the Lipari-Szabo formalism and were compared with those of hen lysozyme, which was already reported (Mine S et al.. 1999, J Mol Biol 286:1547-1565). In this paper, it was found that the backbone dynamics of free human and hen lysozymes showed very similar behavior except for some residues, indicating that the difference in amino acid sequence did not affect the behavior of entire backbone dynamics, but the folded pattern was the major determinant of the internal motion of lysozymes. On the other hand, it was also found that the number of residues in (NAG)3-bound human and hen lysozymes showed an increase or decrease in the order parameters at or near active sites on the binding of (NAG)3, indicating the increase in picosecond to nanosecond. These results suggested that the immobilization of residues upon binding (NAG)3 resulted in an entropy penalty and that this penalty was compensated by mobilizing other residues. However, compared with the internal motions between both ligand-bound human and hen lysozymes, differences in dynamic behavior between them were found at substrate binding sites, reflecting a subtle difference in the substrate-binding mode or efficiency of activity between them.  相似文献   

7.
The formation of syncytia in cell monolayers infected with a macroplaque strain (MP) of herpes simplex virus was found to be inhibited by hen egg-white lysozyme. Inhibition was roughly proportional to the enzyme concentration. The virus titres in supernatant fluids of lysozyme-treated cultures were also reduced compared with untreated cultures. Control experiments excluded the possibility that lysozyme altered the virus viability and infectivity or impaired cell growth. Since lysozyme is a cationic protein, further experiments were performed in order to discover whether its antisyncytiogenic effect depended on its enzymatic activity or on its positive charge. Inhibition of the MP-induced polycaryocytosis was found to be caused by heat-inactivated lysozyme and three chemically-modified lysozymes with a higher positive charge (one retaining and two lacking enzymatic activity).  相似文献   

8.
On the basis of the molecular evolution of hen egg white, human, and turkey lysozymes, three replacements (Trp62 with Tyr, Asn37 with Gly, and Asp101 with Gly) were introduced into the active-site cleft of hen egg white lysozyme by site-directed mutagenesis. The replacement of Trp62 with Tyr led to enhanced bacteriolytic activity at pH 6.2 and a lower binding constant for chitotriose. The fluorescence spectral properties of this mutant hen egg white lysozyme were found to be similar to those of human lysozyme, which contains Tyr at position 62. The replacement of Asn37 with Gly had little effect on the enzymatic activity and binding constant for chitotriose. However, the combination of Asn37----Gly (N37G) replacement with Asp101----Gly (D101G) and Trp62----Tyr (W62Y) conversions enhanced bacteriolytic activity much more than each single mutation and restored hydrolytic activity toward glycol chitin. Consequently, the mutant lysozyme containing triple replacements (N37G, W62Y, and D101G) showed about 3-fold higher bacteriolytic activity than the wild-type hen lysozyme at pH 6.2, which is close to the optimum pH of the wild-type enzyme.  相似文献   

9.
The role of binding subsite A, located at the terminal of the six binding subsites of hen egg-white lysozyme, in substrate binding and catalytic reactions was investigated by kinetic studies using a chemical modification method. Computer simulation showed that, although subsite A participates in the binding of the substrate, a decrease in the affinity of subsite A to the sugar residue does not cause a lowering of the rate of substrate consumption but changes the mode of the reaction by changing the distribution of the products formed. The binding free energies of subsites for Asp-101-modified lysozymes were estimated by data-fitting from the experimental time-courses. The contribution of Asp-101 in hen egg-white lysozyme to the substrate binding at subsite A was estimated to correspond to a binding free energy of about -3 kJ/mol, 30% of the total binding free energy of subsite A. Modification of Asp-101 affected not only the binding free energy of subsite A but also that of subsite C.  相似文献   

10.
Using lysozyme-lysate of Micrococcus lysodeikticus cell wall coupled with Sepharose, several bacteriolytic enzymes were purified from crude preparations of animal and microbial origin. Quail egg-white, human milk and salivary lysozymes [EC 3.2.1.17] were adsorbed onto the adsorbent at pH 5-7 and eluted with 2M NaCl at pH 10. By means of these treatments, lysozymes were purified 20-250 fold with activity recoveries of 60-80%, and the quail lysozyme thus purified was shown to be discelectrophoretically homogeneous. Some bacteriolytic enzymes of microbial origin were also highly purified by using this affinity adsorbent. A bacterial lysozyme from Bacillus sp. ML-208 showed high affinity for the ligand and was not eluted under the conditions mentioned above, but was recovered by elution with 2M guanidine-HCl at pH 5.8, resulting in a 500-fold increase in the specific activity. A Pseudomonas-lytic enzyme from Streptomyces sp. P-51 was easily released from the adsorbent by elution with 0.5M NaCl at pH 5.0. A staphylolytic F2 enzyme from S. griseus S-35 and a chitinase [EC 3.2.1.14] from yam, both of which were completely inert toward M. lysodeikticus cell wall, passed through the adsorbent column. A modified ligand, in which muramic acid and glucosamine residues were N,O-acetylated, failed to adsorb any of these animal and bacterial lysozymes. Some of the enzymatic properties and bacteriolytic action spectra of these purified enzymes are also described in this paper in comparison with those of hen egg-white lysozyme.  相似文献   

11.
The association constants for the binding of various saccharides to hen egg-white lysozyme and human lysozyme have been measured by fluorescence titration. Among these are the oligosaccharides GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-GlcNAc, GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-N-acetyl-D-xylosamine, and GlcNAc-beta(1 leads to 4-GlcNAc-beta(1 leads to 4)-MurNAc, prepared here for the first time. The binding constants for saccharides which must have N-acetylmuramic acid, N-acetyl-D-glucosamine, or N-acetyl-D-xylosamine bound in subsite D indicate that there is no strain involved in the binding of N-acetyl-D-glycosamine in this site, and that the lactyl group of N-acetylmuramic acid (rather than the hydroxymethyl group) is responsible for the apparent strain previously reported for binding at this subsite. For hen egg-white lysozyme, the dependence of saccharide binding on pH or on a saturating concentration of Gd(III) suggests that the conformation of several of the complexes are different from one another and from that proposed for a productive complex. This is supported by fluorescence difference spectra of the various hen egg-white lysozyme-saccharide complexes. Human lysozyme binds most saccharides studied more weakly than the hen egg-white enzyme, but binds GlcNAc-beta(1 leads to 4)-MurNAc-beta(1leads to 4)-GlcNAc-beta(1 leads to 4)-MurNAc more strongly. It is suggested that subsite C of the human enzyme is "looser" than the equivalent site in the hen egg enzyme, so that the rearrangement of a saccharide in this subsite in response to introduction of an N-acetylmuramic acid residue into subsite D destabilizes the saccharide complexes of human lysozyme less than it does the corresponding hen egg-white lysozyme complexes. This difference and the differences in the fluorescence difference spectra of hen egg-white lysozyme and human lysozyme are ascribed mainly to the replacement of Trp-62 in hen egg-white lysozyme by Tyr-63 in the human enzyme. The implications of our findings for the assumption of superposition and additivity of energies of binding in individual subsites, and for the estimation of the role of strain in lysozyme catalysis, are discussed.  相似文献   

12.
The formamide linkage of an inactive lysozyme derivative (1-NFK-lysozyme), formed by selective ozonization of tryptophan 62 in hen egg-white lysozyme [EC 3.2.1.17] was hydrolyzed with dilute acid faster in the frozen state at about --10 degrees than at 20 degrees. On hydrolysis of 1-NFK-lysozyme the low lytic activity increased to approximately 80% of that of native lysozyme. It is suggested that the binding ability associated with kynurenine 62 in the lysozyme derivative formed by this hydrolysis may be responsible for increase in enzymatic activity.  相似文献   

13.
The interaction of N-acetyl-chitotriose ((GlcNAc)3) with human lysozyme [EC 3.2.1.17] was studied at various pH values by measuring changes in the circular dichroic (CD) band at 294 or 255 nm and the data were compared with the results for hen and turkey lysozymes reported previously (Kuramitsu et al. (1974) J. Biochem.76, 671-683; Kuramitsu et al. (1975) J. Biochem. 77, 291-301). The pH dependence of the binding constant of (GlcNAc)3 to human lysozyme was different from those for hen and turkey lysozymes. The catalytic carboxyls of human lysozyme, Asp 52 and Glu 35, were not perturbed on binding of (GlcNAc)3. This is consistent with the previous findings that the macroscopic pK values of Asp 52 and Glu 35 of human lysozyme are 3.4 and 6.8 at 0.1 ionic strength and 25 degrees and were unchanged on complexing with (GlcNAc)3. An ionizable group with pK 4.5, which participates in the binding of (GlcNAc)3 to hen lysozyme and was assigned as Asp 101, did not participate in the binding of the saccharide to human lysozyme. Between pH 9 and 11, the binding constants of (GlcNAc)3 to hen lysozyme remained unchanged, whereas perturbation of an ionizable group with pK 10.5 to 10.0 was observed for human lysozyme. This group may be Tyr 62 in the active-site cleft. The binding constants of (GlcNAc)3 to human lysozyme molecules having different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated using the binding constants obtained in the present experiments and the microscopic ionization constants of the catalytic carboxyls obtained previously. All four species of human lysozyme had similar binding constants to (GlcNAc)3. This result is different from those for hen and turkey lysozymes.  相似文献   

14.
A rapid method for the purification of lysozyme (mucopeptide N-acetyl-muramoylhydrolase, EC 3.2.1.17) from hen egg-white has been devised. It was that gel filtration chromatography on agarose columns can be used selectively to purify lysozyme, due to the fact that this protein interacts with the agarose matrix and elutes later than the corresponding total volume for the column. Thus, lysozyme is directly obtained in a relatively pure form and with a high specific activity. In principle, this simple method can be used to prepare lysozymes from other sources.  相似文献   

15.
Despite the low similarity between their amino acid sequences, the core structures of the fold between chicken-type and goose-type lysozymes are conserved. However, their enzymatic activities are quite different. Both of them exhibit hydrolytic activities, but the goose-type lysozyme does not exhibit transglycosylation activity. The chicken-type lysozyme has a retaining-type reaction mechanism, while the reaction mechanism of the goose-type lysozyme has not been clarified. To clarify the latter mechanism, goose egg-white lysozyme (GEL)-N-acetyl-D-glucosamine (GlcNAc)6 complexes were modelled and compared with hen egg-white lysozyme (HEL)-(GlcNAc)6 complexes. By systematic conformational search, 48 GEL-(GlcNAc)6 complexes were modelled. The right and left side, and the amino acid residues in subsites E-G were identified in GEL. The GlcNAc residue D could bind towards the right side without distortion and there was enough room for a water molecule to attack the C1 carbon of GlcNAc residue D from alpha-side in the right side and not for acceptor molecule. The result of molecular dynamics simulation suggests that GEL would be an inverting enzyme, and Asp97 would act as a second carboxylate and that the narrow space of the binding cleft at subsites E-G in GEL may prohibit the sugar chain to bind alternative site that might be essential for transglycosylation.  相似文献   

16.
1. Lysozyme from eggs of the Dipterous Ceratitis capitata (Wiedeman) has been purified by ion-exchange chromatography and gel filtration and its physicochemical properties have been investigated. This is the first insect lysozyme characterized so far and it exhibits some properties different to those described for other animal lysozymes. 2. Lysozyme from the insect eggs has a molecular weight of about 23200 and a sedimentation coefficient of 2.4 S. Molecular weight determination by sodium dedecylsulphate gel electrophoresis indicates that the molecule consists of a single polypeptide chain. 3. This lysozyme preparation shows notable stability at acidic pH values and lability at alkline pH values. It shows a single optimum pH at about 6.5.4. Chitinase/muramidase specific activity ratio is around 350 times higher for the insect lysozyme than for the hen egg-white enzyme. 5. The amino-acid composition shows the presence of one tryptophan residue per molecule of enzyme. This fact differentiates the lysozyme from insect eggs from other animal and plant lysozymes. From the amino acid composition, the absorption coefficient and the partial specific volume are calculated. 6. Glycine is the N-terminal residue.  相似文献   

17.
More than 20 different human proteins can fold abnormally resulting in the formation of pathological deposits and several lethal degenerative diseases. Despite extensive investigations on amyloid fibril formation, the detailed molecular mechanism remained far from complete. In this work, utilizing hen egg-white lysozymes as a model system, two objectives were pursued: (1) to search for suitable conditions for producing amyloid fibrils and (2) to investigate inhibitory activities of two potential molecules against lysozyme fibril formation. Via numerous spectroscopic analyses and electron microscopy, our results showed that the formation of lysozyme amyloid fibrils at pH 2.0 was considerably increased by the addition of salt. Moreover, the inhibition of lysozyme amyloid formation by either p-benzoquinone or melatonin followed a concentration-dependent fashion. Furthermore, p-benzoquinone, in comparison with melatonin, served as a more effective inhibitor against amyloid fibril formation of lysozyme. We believe that a better understanding of how hen egg-white lysozymes aggregate will not only aid in deciphering the molecular mechanism of amyloid fibrillogenesis, but also shed light on a rational design of effective therapeutics for amyloidogenic diseases.  相似文献   

18.
The egg white of C. atratus contains two forms of lysozyme, a 'chick-type' which is similar to that found in the egg white of the domestic hen, and a 'goose-type' similar to that found in the egg white of the Embden goose. The molecular structure of the goose-type lysozyme has been determined at a resolution of a 2.8 A by X-ray crystallographic analysis. The structure consists of two domains linked by a long stretch of alpha-helix. In all, there are seven helical segments in the structure. While there is no amino acid sequence homology with either hen egg-white or bacteriophage T4 lysozymes, there are portions of the structure where the folding of the main chain is similar to that found in portions of either hen egg-white lysozyme or T4 lysozyme or both. In particular, there is a consistency of structure in the arrangement of acid groups in the catalytic site. G-o plots calculated for this structure and for the bacteriophage T4 lysozyme structure show that both have similar 'modules' of structure with boundaries occurring at structurally equivalent positions. Three of the common boundaries are equivalent structurally to three of the four module boundaries observed in G-o plots of hen egg-white lysozyme. The variation in the position of the remaining boundary may be related to differences in substrate binding.  相似文献   

19.
The binding constants of N-acetylglucosamine (G1cNAc) and its methyl alpha- and beta- glycosides to hen and turkey egg-white lysozymes [EC 3.2.1.17], in the latter of which Asp 101 is replaced by Gly, were determined at various pH values by measuring changes in the circular dichroic (DC) band at 295 nm. The binding of beta-methyl-G1cNAc to turkey and hen lysozymes perturbed the pK value of Glu 35 from 6.0 to 6.5, the pK value of Asp 52 from 3.5 to 3.9, and the pK value of Asp 66 from 1.3 to 0.7. In addition, perturbation of the pK value of Asp 101 from 4.4 to 4.0 was observed in the binding of this saccharide to hen lysozyme. The binding of alpha-methyl-GlcNAc to hen and turkey lysozymes perturbed the pK value of Glu 35 to the alkaline side by about 0.5 pH unit, the pK value of Asp 66 to the acidic side by about 0.5 pH unit, and the pK value (4.4) of an ionizable group to the acidic side by about 0.6 pH unit. The last ionizable group was tentatively assigned to Asp 48. The pK value of Asp 52 was not perturbed by the binding of this saccharide. The pH dependence curves for the binding of GlcNAc to hen and turkey lysozymes were very similar and it was suggested that Asp 48, in addition to Asp 66, Asp 52, and Glu 35, is perturbed by the binding of GlcNAc.  相似文献   

20.
The amino acid sequence of Indian peafowl egg-white lysozyme has been identified. The reduced and carboxymethylated lysozyme was digested with trypsin followed by purification of the resulting peptides by reverse-phase HPLC. The tryptic peptides obtained were sequenced using the DABITC/PITC double coupling manual sequencing method. The alignment of the tryptic peptides were deduced by comparison with corresponding peptides of hen egg-white lysozyme. This protein proved to consist of 129 amino acid residues, and a relative molecular mass of 14423 Da was calculated. Amino acid sequence comparison of peafowl lysozyme and other phasianoid bird lysozymes revealed a maximum homology ratio of 98% with turkey lysozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号