首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Many benthic marine invertebrate animals release larvae that are dispersed by ocean currents. These larvae swim and can respond to environmental factors such as chemical cues. However, larvae are so small (generally 0.01-1 mm) that they are often assumed to be passive particles whose trajectories are determined by the motion of the water in which they are riding. Therefore, marine larvae are useful model organisms to study the more general question of how the locomotion of very small animals in complex, variable natural habitats is affected by the motion of the fluid (water or air) around them. Studying larval locomotion under conditions of water flow encountered in nature is challenging because measuring the behavior of an individual microscopic organism requires high magnification imaging that is difficult to do in the field. The purpose of this article is to synthesize in one place the various approaches that we have been using to address the technical challenges of studying the locomotion of microscopic larvae in realistic ambient flow. The steps in our process include: (1) measuring water flow in the field; (2) mimicking realistic water movement in laboratory flumes to measure larval scale fluctuations in velocity of flow and concentration of chemical cues; (3) mimicking fine scale temporal patterns of larval encounters with a dissolved chemical cue to record larval responses; (4) using individual-based models to put larvae back into the larger scale environmental flow to determine trajectories; and (5) mimicking fine scale spatial and temporal patterns of larval encounters with water velocities and shear to determine the instantaneous forces on larvae. We illustrate these techniques using examples from our ongoing research on the settlement of larvae onto fouling communities and from our published work on settlement of larvae onto coral reefs. These examples show that water velocities and concentrations of chemical cues encountered by microscopic organisms can fluctuate in fractions of a second and vary over scales of less than a millimeter.  相似文献   

2.
The life cycle of many sessile marine invertebrates includes a dispersive planktonic larval stage whose ability to find a suitable habitat in which to settle and transform into benthic adults is crucial to maximize fitness. To facilitate this process, invertebrate larvae commonly respond to habitat-related chemical cues to guide the search for an appropriate environment. Furthermore, small-scale hydrodynamic conditions affect dispersal of chemical cues, as well as swimming behavior of invertebrate larvae and encounter with potential habitats. Shipworms within the family Teredinidae are dependent on terrestrially derived wood in order to complete their life cycle, but very little is known about the cues and processes that promote settlement. We investigated the potential for remote detection of settling substrate via waterborne chemical cues in teredinid larvae through a combination of empirical field and laboratory flume experiments. Natural populations of teredinid larvae were significantly more abundant close to wooden structures enclosed in plankton net compared to empty control nets, clearly showing that shipworm larvae can sense and respond to chemical cues associated with suitable settling substrate in the field. However, the flume experiments, using ecologically relevant flow velocities, showed that the boundary layer around experimental wooden panels was thin and that the mean flow velocity exceeded larval swimming velocity approximately 5 mm (≈ 25 larval body lengths) from the panel surface. Therefore, we conclude that the scope for remote detection of waterborne cues is limited and that the likely explanation for the higher abundance of shipworm larvae associated with the wooden panels in the field is a response to a cue during or after attachment on, or very near, the substrate. Waterborne cues probably guide the larva in its decision to remain attached and settle, or to detach and continue swimming and drifting until the next encounter with a solid substrate.  相似文献   

3.
SUMMARY The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae . Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology.  相似文献   

4.
5.
In flow tank experiments, I tested the relative importance of active and passive processes to larvae settling on manufactured casts that were hydrodynamically rough at a small scale (mm to <1 cm). I predefined two distinct regions of small-scale flow that I used to manipulate larval settlement behaviour of the red abalone Haliotis rufescens Swainson. The larvae show a stringent settlement response associated with coralline red algae. Haliotis rufescens larvae settled preferentially to an inducer regardless of the flow conditions, as expected. However, the ability of H. rufescens larvae to show this stringent behaviour was altered by changing the small-scale flow. When the free-stream velocity was low, the larvae responded to a settlement cue regardless of the small-scale hydrodynamics. When free-stream velocity was higher, the larvae acted increasingly as passive particles in their deposition, but settled only in response to an inducer. The results were consistent in two flow tanks, across 2 years and between different batches of larvae.  相似文献   

6.
Whalan S  Webster NS  Negri AP 《PloS one》2012,7(1):e30386
In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 μm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.  相似文献   

7.
Low dissolved oxygen concentrations present numerous challenges for non-air-breathing aquatic organisms. Amphibian larvae and their predators can respond to oxygen levels by altering their behavior and physiology, but the ecological consequences of these responses are generally unknown. We conducted two laboratory experiments to study the effects of dissolved oxygen on respiratory behavior and susceptibility to predation of larval bullfrogs (Rana catesbeiana). In the first, we exposed small, lungless tadpoles to a predatory salamander larva (Ambystoma tigrinum) under high and low oxygen conditions. More tadpoles were consumed in high oxygen tanks than in low ones, presumably because salamanders remained near the surface in the low oxygen tanks while most tadpoles rested on the bottom. Tadpole activity depended on both oxygen and predator presence: swimming decreased after addition of salamanders under high oxygen, but increased under low oxygen. In the second experiment, we examined the effect of predator chemical cues on the air-breathing rate of large tadpoles with well-developed lungs under low oxygen conditions. In the presence of chemical cues produced by dragonfly larvae consuming bullfrog tadpoles, air-breathing and swimming were significantly reduced relative to controls. These experiments demonstrate the potential impact of dissolved oxygen on predator-prey interactions, and suggest that outcomes depend on the respiratory ecology of both predator and prey.  相似文献   

8.
The American horseshoe crab, Limulus polyphemus (Linnaeus), typically inhabits estuaries and coastal areas with pronounced semi-diurnal and diurnal tides that are used to synchronize the timing of spawning, larval hatching, and emergence. Horseshoe crabs spawn in the intertidal zone of sandy beaches and larval emergence occurs when the larvae exit the sediments and enter the plankton. However, L. polyphemus populations also occur in areas that lack significant tidal changes and associated synchronization cues. Endogenous activity rhythms that match predictable environmental cycles may enable larval horseshoe crabs to time swimming activity to prevent stranding on the beach. To determine if L. polyphemus larvae possess a circatidal rhythm in vertical swimming, larvae collected from beach nests and the plankton were placed under constant conditions and their activity monitored for 72 h. Time-series analyses of the activity records revealed a circatidal rhythm with a free-running period of ≈ 12.5 h. Maximum swimming activity consistently occurred during the time of expected falling tides, which may serve to reduce the chance of larvae being stranded on the beach and aid in seaward transport by ebb currents (i.e., ebb-tide transport). To determine if agitation serves as the entrainment cue, larvae were shaken on a 12.4 h cycle to simulate conditions during high tide in areas with semi-diurnal tides. When placed under constant conditions, larval swimming increased near the expected times of agitation. Thus, endogenous rhythms of swimming activity of L. polyphemus larvae in both tidal and nontidal systems may help synchronize swimming activity with periods of high water and inundation.  相似文献   

9.
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding--lecithotrophic--larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.  相似文献   

10.
Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred na?ve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.  相似文献   

11.
Larvae of the nudibranch mollusc Phestilla sibogae metamorphose in response to a small organic compound released into seawater by their adult prey, the scleractinian coral Porites compressa. The transformations that occur during metamorphosis, including loss of the ciliated velum (swimming organ), evacuation of the shell, and bodily elongation, are thought to be controlled by a combination of neuronal and neuroendocrine activities. Activation of peripheral chemosensory neurons by the metamorphosis-inducing compound should therefore elicit changes within the central nervous system. We used extracellular recording techniques in an attempt to detect responses of neurons within the larval central ganglia to seawater conditioned by P. compressa, to seawater conditioned by the weakly inductive coral Pocillopora damicornis, and to non-inductive seawater controls. The activity patterns within the nervous systems of semi-intact larvae changed in response to both types of coral exudates. Changes took place in two size classes of action potentials, one of which is known to be associated with velar ciliary arrests.  相似文献   

12.
Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton.  相似文献   

13.
SUMMARY In many animals, larval structures and juvenile rudiments develop independently. One advantage of this independence is that juvenile rudiments can be expended as a nutrient reserve or for energy conservation. When bryozoan cyphonautes larvae were starved, structures required for settlement and metamorphosis shrank. When the larvae were again fed, these structures grew back. Starvation reduced the size of both the internal sac, a rudiment of postlarval juvenile structures, and the pyriform organ, which functions in sensing and crawling on the substratum at settlement. In contrast, starvation affected neither the size of the larval shell nor the lengths of the ciliary bands used in swimming and feeding. Starved larvae that had reduced the pyriform organ and internal sac did not metamorphose in response to stimuli from a laminarian alga. The laminarian alga did stimulate metamorphosis of the same larvae after renewed feeding, when the larvae had regrown these structures. Thus starved larvae expended body parts needed for settlement and metamorphosis when food was scarce while retaining structures for feeding, swimming, and defense. Starved larvae thereby retained the capacity to regrow structures needed for settlement and metamorphosis when they again encountered food. Advantages from expendable juvenile rudiments may enhance selection for their being developmentally distinct from structures for larval swimming and feeding.  相似文献   

14.
Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat-light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r(2) = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat-light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming.  相似文献   

15.
Although optimal investment theory would be similarly applicable to eusocial insects to maximize colony reproductive outputs, directly distinguishing an amount of investment in each larva should be a difficult task for workers because of the characteristics of group living. Thus, it is expected that workers adjust brood care by using a cue or signal conveying information of larval status. In termites, which are typical group of eusocial insects, there are nevertheless few direct observations on worker brood care and little is known about cues inducing worker feeding. I show here that a Japanese subterranean termite Reticulitermes speratus uses an overt food solicitation by larva, “pecking”, as a cue for worker feeding. Direct observations demonstrated that workers feed larvae in response to larval pecking. Furthermore, nutritional experiments showed that larvae exhibited pecking more frequently when their nutrient status is lower; hence, pecking may be an honest reflection of larval hunger status. These results indicate that workers can feed more starved larvae than less starved ones because pecking honestly reflects larval hunger state. That is, feeding in response to pecking should standardize the total amount of food intake of each larva and help a termite colony make worker investment efficient.  相似文献   

16.
All chordates share several characteristic features including a dorsal hollow neural tube, a notochord, a pharynx and an endostyle. Unlike other chordate taxa, ascidians have a biphasic life-history with two distinct body plans. During metamorphosis, the larval nerve cord and notochord degenerate and the pharyngeal gill slits and endostyle form. While ascidians, like other marine invertebrates, metamorphose in response to specific environmental cues, it remains unclear how these cues trigger metamorphosis. We have identified a novel gene (Hemps) which encodes a protein with a putative secretion signal sequence and four epidermal growth factor (EGF)-like repeats which is a key regulator of metamorphosis in the ascidian Herdmania curvata. Expression of Hemps increases markedly when the swimming tadpole larva becomes competent to undergo metamorphosis and then during the first 24 hours of metamorphosis. The Hemps protein is localised to the larval papillae and anterior epidermis of the larva in the region known to be required for metamorphosis. When the larva contacts an inductive cue the protein is released, spreading posteriorly and into the tunic as metamorphosis progresses. Metamorphosis is blocked by incubating larvae in anti-Hemps antibodies prior to the addition of the cue. Addition of recombinant Hemps protein to competent larvae induces metamorphosis in a concentration-dependent manner. A subgroup of genes are specifically induced during this process. These results demonstrate that the Hemps protein is a key regulator of ascidian metamorphosis and is distinct from previously described inducers of this process in terrestrial arthropods and aquatic vertebrates.  相似文献   

17.
The present study is based on two year experiments; it analyses swimming behaviour and swimming speed at different developmental stages of the herring. Yolk sac larvae tend to sink rather rapidly during resting phases. At the end of the yolk sac stage the sinking rate is at its minimum; it increases again with increasing larva size. During the phase of yolk sac resorption, vertical movements become gradually transformed into horizontal ones. Generally, three types of swimming can be distinguished: (1) “Abrupt swimming” consisting of very short periods of fast swimming; normally each dart is connected with a change in swimming direction. (2) “Normal swimming” characterized by steady movements for several seconds; it results in a winding path. (3) “Slow meandering” representing search swimming, a slowly winding locomotion with a large amplitude of each winding but with very little net progression of the larva. Swimming speed varies considerably in all size groups. The 8 to 11 mm (total length) larvae reach a mean swimming velocity (undulation) of 1.0 to 1.2 cm per second. Swimming speed, measured as the straight line distance between start and end points of a single swimming phase, attains mean values of 7 to 8 mm/sec in 8 to 11 mm larvae, 10 to 11 mm/sec in 11 to 15 mm larvae, 21 to 25 mm/sec in 19 to 24 mm larvae, and 40 to 50 mm/sec in 32 to 40 mm larvae. Swimming activity changes during larval development and seems to be influenced by food supply. The total distance travelled in 5 minutes by the head of a yolk sac larva is 1 to 3 m. About 8 days after hatching, sinking rate is low and “search swimming” (slow meandering movements) prevails. The path covered by the head within 5 minutes is 0.8 to 1.5 m.  相似文献   

18.
Fukui  Yoko 《Hydrobiologia》1991,214(1):137-142
The development of Haliplanella lineata, following fertilization in the laboratory, was studied by light and electron microscopy. Spawned ova were spherical, magenta in color and about 120–150 µm in diameter. Cleavage was holoblastic and radial. Gastrulation occurred by immigration and invagination. Eighteen hours after fertilization, the embryo became a swimming planula larva with an apical organ and ciliary tuft at the aboral end. In the laboratory, planulae lived for about 2 weeks in the swimming state but in no case was there any settlement by larvae in this study. The structural study of planulae concentrated on the development of the aboral ectoderm, because of the functional significance of its cellular organization in larval settlement.  相似文献   

19.
The amount of energy available to larvae during swimming, location of a suitable recruitment site, and metamorphosis influences the length of time they can spend in the plankton. Energetic parameters such as swimming speed, oxygen consumption during swimming and metamorphosis, and elemental carbon and nitrogen content were measured for larvae of four species of bryozoans, Bugula neritina, B. simplex, B. stolonifera, and B. turrita. The larvae of these species are aplanktotrophic with a short free-swimming phase ranging from less than one hour to a maximum of about 36 hours. There is about a fivefold difference in larval volume among the four species, which scales linearly with elemental carbon content and, presumably, with the amount of endogenous reserves available for swimming and metamorphosis. Mean larval swimming speeds (in centimeters per second) were similar among species. Specific metabolic rate and larval size were inversely related. For larvae of a given species, respiration rates remained similar for swimming and metamorphosis; however, because metamorphosis lasts about twice as long as a maximal larval swimming phase, it was more energetically demanding. Larger larvae expended more energy to complete metamorphosis than did smaller larvae, but in terms of the percentage of larval energy reserves consumed, swimming and metamorphosis were more "expensive" for smaller larvae. A comparison of the energy expended during larval swimming calculated on the basis of oxygen consumption and on the basis of elemental carbon decrease suggests that larvae of Bugula spp. may not use significant amounts of dissolved organic material (DOM) to supplement their endogenous energy reserves.  相似文献   

20.
Resistance genes (R genes) are an important part of the plant's immune system. Among insects, the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), larva is the target of the greatest number of characterized R genes (H1-H32). The biochemical/molecular mechanism of R gene resistance to Hessian fly is not well understood. In the absence of an effective R gene, larvae caused extensive growth deficits (> 30 cm) in wheat seedlings. In the presence of one of three effective R genes, H6, H9, or H13, larvae caused small growth deficits (approximately 3-4 cm) in two leaves (third and fourth) that were actively growing during the first days of larval attack. After larvae died on R gene plants, the fifth leaf and tiller leaves exhibited small increases in growth (2-4 cm). Growth responses of susceptible and resistant plants diverged at a time when Hessian fly larvae were establishing a nutritive gall tissue at feeding sites. The results of this study support the hypothesis that R gene resistance cannot prevent initial larval attack, but, by stopping the formation of the larval gall, it prevents the most serious consequences of larval attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号