首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Loss of function" alterations in growth inhibitory signal transduction pathways are common in cancer cells. In this study, we show that growth arrest (GA) treatments--serum and growth factor withdrawal and growth inhibitory IL-6 family cytokines (Interleukin-6 and Oncostatin M (OSM))--increase STAT3 phosphorylation (pSTAT3), increase CCAAT enhancer binding protein delta (C/EBPdelta) gene expression and induce GA of primary, finite-lifespan human mammary epithelial cells (HMECs), and immortalized breast cell lines (MCF-10A and MCF-12A). In contrast, serum and growth factor withdrawal from human breast cancer cell lines (MCF-7, SK-BR-3, T-47D, and MDA-MB-231) for up to 48 h induced a relatively modest increase in pSTAT3 levels and C/EBPdelta gene expression and resulted in varying levels of GA. In most breast cancer cell lines, IL-6 family cytokine treatment increased pSTAT3 levels and C/EBPdelta gene expression, however, growth inhibition was cell line dependent. In addition to "loss of function" alterations in growth inhibitory pathways, breast cancer cell lines also exhibit "gain of function" alterations in growth signaling pathways. The Akt growth/ survival pathway is constitutively activated in T-47D and MCF-7 breast cancer cells. The Akt inhibitor LY 294,002 significantly enhanced T-47D growth inhibition by serum and growth factor withdrawal or IL-6 family cytokine treatment. Finally, we show that activation of the pSTAT3/C/EBPdelta growth control pathway is independent of estrogen receptor status. These results demonstrate that "loss of function" alterations in the pSTAT3/C/EBPdelta growth inhibitory signal transduction pathway are relatively common in human breast cancer cell lines. Defective activation of the pSTAT3/ C/EBPdelta growth inhibitory signal transduction pathway, in conjunction with constitutive activation of the Akt growth stimulatory pathway, may play a synergistic role in the etiology or progression of breast cancer.  相似文献   

2.
Interleukin 6 receptor soluble urinary protein (IL-6-R-SUP), a purified urinary protein binding IL-6 and identified as a truncated 50 kDa soluble form of the 80 kDa IL-6 cellular receptor, was tested for its biological activity. Addition of IL-6-R-SUP enhances the growth stimulation of mouse plasmacytoma T1165 by subliminal concentrations of human recombinant IL-6. Since this effect could be due to a lower affinity of human IL-6 for the mouse cell receptor, we tested the effect of IL-6-R-SUP on human cells. We show that the growth-inhibitory effect of IL-6 on breast carcinoma cells is enhanced by addition of IL-6-R-SUP to these human cells although they possess abundant IL-6 receptors. With IL-6-R-SUP, complete growth inhibition by IL-6 could be achieved and the cells became more sensitive to low levels of IL-6. These effects were prevented by a monoclonal antibody against IL-6-R-SUP which blocks IL-6 binding to cells. The naturally occurring IL-6-R-SUP may help to increase the growth-regulatory action of IL-6.  相似文献   

3.
The purpose of this study was to analyze the effects of recombinant human interleukin 4 (IL-4) on the differentiation and proliferation in vitro of human granulocyte/macrophage (GM) and erythroid progenitors. IL-4 was added to either fetal bovine serum (FBS)-supplemented or to FBS-deprived cultures of unfractionated human marrow cells or marrow cells depleted of adherent and/or T cells. Paradoxical effects similar to those reported in the murine system were detected in these experiments. In FBS-supplemented cultures, IL-4, which had no effect on the growth or erythroid bursts (from burst-forming cells; BFU-E) detected in the presence of Epo alone, decreased by 46% the number of erythroid bursts detected in the presence of Epo and phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). In contrast, in FBS-deprived cultures, IL-4 increased by 30-700% the number of erythroid bursts in cultures containing Epo alone or containing Epo, IL-3, and GM-CSF. The stimulatory effect of IL-4 on erythroid burst growth under FBS-deprived conditions was particularly evident when adherent cells were removed. Under the conditions investigated, IL-4 had little effect on the growth of GM colonies. In FBS-deprived suspension cultures of nonadherent, T-cell-depleted marrow cells, IL-4 maintained both the number of BFU-E and CFU-GM for at least 8 days. In these cultures, IL-4 antagonized the capacity of IL-3 to increase the number of BFU-E but IL-4 and IL-3 acted together to maintain the number of CFU-GM. To determine if IL-4 acted directly or indirectly, its effects on the growth of factor-dependent subclones of the murine progenitor cell line 32D were analyzed. Three subclones were studied: the original IL-3-dependent clone 32D cl.3, the Epo-dependent erythroid clone 32D Epo-1, and the G-CSF-dependent myeloid clone 32D G-1. IL-4 alone failed to induce colony growth from these cell lines. However, IL-4 inhibited by 25% the number of colonies formed by 32D cl.3 in the presence of IL-3 while increasing by 25% and 25-50% the number of colonies formed by 32D Epo-1 and 32D G-1 in the presence of Epo or G-CSF, respectively. These results indicate that human IL-4, as its murine counterpart, is a multilineage growth factor with paradoxical effects which are mediated by the direct action of IL-4 on progenitor cells.  相似文献   

4.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

5.
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box–binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte–macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis.  相似文献   

6.
Sex steroids, in particular estradiol (E2) and progesterone (P4), play, together with other hormones and growth factors, a role in the development of normal breast tissue. The effect of four progestagens (norethisterone, 3-ketodesogestrel, gestodene and P4) and Org OD14, a steroid with weak estrogenic, progestagenic and androgenic properties were studied on growth of breast tumor cells in vitro using two subclones of MCF-7 (H and A) and T47D (S and A) cells. In addition, we investigated the effects of 3-ketodesogestrel, gestodene and Org OD14 on the growth of 7,12-dimethyl-benz(a)anthracene(DMBA)-induced mammary tumors in rats. In the in vitro assays with MCF-7 cells norethisterone, 3-ketodesogestrel and gestodene stimulated growth only at high doses (10−7 M), whereas P4 had no effect. Gestodene was more potent than 3-ketodesogestrel and norethisterone. Org OD14, stimulated cell growth at a dose of 10−8 M, while E2 is active at 10−10 M. In T47D-A cells similar effects were found, but the subclone S did not respond to the progestagens and Org OD14. The two T47D subclones also reacted differently to progestagens during growth stimulation with E2. In T47D-S the progestagens and Org OD14 inhibited, while in T47D-A these compounds did not modulate the effect of E2. In the DMBA model we found that gestodene and 3-ketodesogestrel were able to inhibit tumor growth to the same extent. Surprisingly, Org OD14 was even more effective in the DMBA model using the therapeutic approach. Using the prophylaxic approach tumor development was delayed and tumor growth was strongly suppressed. The inhibitory effects of Org OD14 on tumor growth in the DMBA model may be attributed to its mixed hormonal profile. From these studies we conclude that different cell lines and even subclones thereof respond quite differently to steroids. Both in vitro and in vivo studies are required to judge whether synthetic steroids might be involved in an increased risk for the development of breast tumors.  相似文献   

7.
The expression of the IL-6 gene is usually tightly controlled and may be induced in specific tissues after treatment with appropriate stimuli. Although much is known about the inducible expression of the IL-6 gene, the molecular mechanisms responsible for its repression in specific tissues or cell types remain poorly defined. To address this question we have studied two human breast carcinoma cell lines, MDA-MB-231, in which the IL-6 gene is expressed, and, MCF-7, in which the IL-6 message is undetectable by Northern blot assay even in the presence of inducers. The expression of the IL-6 message was estimated after treatment with 5-aza-2'deoxycytidine and the methylation state of the IL-6 gene was analyzed. We show herein that treatment of MCF-7 cells with an agent which reduces DNA methylation correlates with IL-6 gene hypomethylation and increases the level of its expression.  相似文献   

8.
Direct in vitro effects of IL-1 on hormone-dependent (MCF-7 and ZR-75-B) and independent (HS-578-T and MDA-231) human breast cancer cell proliferation were investigated in short-term and long-term cell cultures. For short-term (48 h) studies [3H]thymidine uptake was used as an index of proliferation, while for long-term (12 day) cultures actual cell numbers were determined. Initial studies, conducted with MCF-7 cells, demonstrated that both forms of recombinant human IL-1 (alpha and beta) at 10(-11) M inhibited [3H]thymidine uptake by MCF-7 by 70%, and by day 7 of the long-term study alpha and beta IL-1 at 10(-11) M inhibited MCF-7 cell growth by 80%. IL-1, while inhibiting the growth of another hormone-dependent breast cancer cell line; ZR-75-B, had no effect on the hormone-independent cell lines MDA-231 and HS-578-T. The differing proliferative responses of the hormone-dependent and independent cells to IL-1 may, in part, be due to the expression of IL-1 receptors on these cells, in that MCF-7 cells express IL-1 receptors [dissociation constant (Kd) = 2.0 x 10(-10) M; receptor density = 2,500 sites per cell and mol wt = 80,000] while the hormone-independent MDA-231 cells do not.  相似文献   

9.
At least one member of the TGF-beta family, TGF-beta 1, has been previously shown to inhibit the anchorage-independent growth of some human breast cancer cell lines (Knabbe et al., 1987; Arteaga et al., 1988). Members of the TGF-beta family might, therefore, provide new strategies for breast cancer therapy. We have studied the inhibitory effects of TGF-beta 1 and TGF-beta 2 on the anchorage-independent growth of the oestrogen receptor-negative cell lines MDA-MB-231, SK-BR-3, Hs578T, MDA-MB-468, and MDA-MB-468-S4 (an MDA-MB-468 clone not growth inhibited by EGF) and the estrogen receptor-positive cell lines MCF7, ZR-75-1, T-47D. TGF-beta 1 and TGF-beta 2 caused a 75-90% growth inhibition of MDA-MB-231, SK-BR-3, Hs578T, and MDA-MB-468 cells and a 50% growth inhibition of ZR-75-1 and early passage (less than 100) MCF7 cells. T-47D cells responded to TGF-beta only in serum-free conditions in the presence of IGF-1 or EGF. The growth of MDA-MB-468-S4 cells and late passage (greater than 500) MCF7 cells was not inhibited by TGF-beta 1 or TGF-beta 2. TGF-beta-sensitive MCF7 and MDA-MB-231 cells did not respond to Muellerian inhibiting substance (MIS), a TGF-beta-related polypeptide. TGF-beta 1 or TGF-beta 2 were mutually competitive for receptor binding with a similar affinity (Kd 25-130 pM, 1,000-13,000 sites per cell). To determine the time course of the TGF-beta effect, an anchorage-dependent growth assay was carried out using MDA-MB-231 cells. Growth inhibition occurred at 6 days, and cell-cycle changes were seen 12 hr after the addition of TGF-beta. Cells accumulated in the G1 phase and were thus inhibited from entering the S-phase. These data indicate that TGF-beta is a potent growth inhibitor in most breast cancer cell lines and provide a basis for studying TGF-beta effects in vivo.  相似文献   

10.
11.
12.
13.
Four estrogen receptor-positive (ER+) [MCF-7, T47D, ZR75 and BT474] and 3 ER- [Hs578T, MDA-MB-468 and MDA-MB-231] human breast cancer cell lines were examined for expression of the IGFBP-5 and IGFBP-6 genes. Northern blot analysis revealed that all cell lines, except MDA-MB-231, expressed IGFBP-5 mRNA. IGFBP-6 mRNA, however, was expressed only by the ER- cell lines. Western immunoblotting indicated that the previously unidentified 31-kDa and 32-kDa IGF binding species secreted by these cell lines are IGFBP-5. The levels of IGFBP-4 and IGFBP-5 were increased in MCF-7 cells by estradiol and IGF-I, respectively, indicating that these BPs may contribute to the growth stimulatory response to these mitogens.  相似文献   

14.
Recent studies have shown that IL-4 can affect lymphocyte responses to IL-2. To evaluate the effects of IL-4 on T cell responses to physiologically relevant stimuli, we studied normal human T cells cultured with a low concentration of anti-CD3 mAb and IL-2 in the presence and absence of added IL-4. The addition of IL-4 to cultures of T cells stimulated with anti-CD3 mAb and IL-2 reduced the proliferative response by 49 to 59%. The inhibitory effect was observed in 3-, 5-, and 7-day cultures. Inhibition was dose-dependent with maximal inhibition at concentrations greater than or equal to 5 to 10 U/ml IL-4. IL-4-mediated inhibition occurred early during the T cell response, inasmuch as addition of IL-4 after stimulation for 24 h did not result in significant inhibition. Phenotypic analyses of cells cultured in the presence of anti-CD3 mAb, IL-2, and IL-4 suggested that the mechanism of regulation by IL-4 involves the inhibition of IL-2R expression. The proportion of both CD4+ and CD8+ cells that expressed IL-2R in response to IL-2 was diminished in the presence of IL-4, although HLA-DR levels were unaffected. Soluble IL-2R was also reduced in supernatants of cultures stimulated with anti-CD3 mAb, IL-2, and IL-4 as compared to cultures stimulated with anti-CD3 mAb and IL-2. These findings indicate that when normal human T cells are stimulated in vitro in a manner that approximates a physiologic interaction with Ag in vivo, rIL-4 provides a potent inhibitory signal to IL-2 responsive cells that is likely mediated by IL-4-induced inhibition of IL-2R expression.  相似文献   

15.
I Tamm  I Cardinale  P B Sehgal 《Cytokine》1991,3(3):212-223
Interleukin-6 (IL-6) causes an epithelial to fibroblastoid conversion and an increase in the motility of human ductal breast carcinoma cell lines ZR-75-1 and T-47D. Although IL-6 decreases DNA synthetic activity in these cell lines, the IL-6-induced alterations in cell shape and motility occur independently of inhibition of DNA synthesis per se. Whereas tumor necrosis factor alpha (TNF-alpha) inhibits DNA synthesis in T-47D cells, it does not cause an epithelial-fibroblastoid conversion or other major morphological changes and does not increase cell motility; TNF-alpha rapidly lyses a majority of ZR-75-1 cells. Furthermore, the DNA synthesis inhibitors 5-fluoro-2'-deoxyuridine (FUDR) and methotrexate (MTX) also do not cause effects mimicking the action of IL-6 on cell structure and motility. Transforming growth factors alpha and beta 1, acidic and basic fibroblast growth factors, epidermal growth factor, and insulin-like growth factor-1 (TGF-alpha, TGF-beta 1, aFGF, bFGF, EGF, and IGF-1) have little or no effect on breast cancer cell morphology, which serves to exclude the possibility that the IL-6-induced changes are a consequence of induction of these growth factors by IL-6. 12-O-tetradecanoyl phorbol-13-acetate (TPA) but not 8-bromoadenosine 3',5'-cyclic monophosphate (Br-cAMP) induces changes in the morphology and associative behavior of ZR-75-1 cells that are similar but not identical to those caused by IL-6. The TPA-induced alterations are not blocked by anti-IL-6 neutralizing antibodies; staurosporine inhibits the TPA-induced cell alterations but not those induced by IL-6. IL-6 and TPA used together have a phenotypic effect that greatly exceeds that of either agent alone and results in extensive cell scattering in less than 1 day. These findings are consistent with the hypothesis that IL-6 and TPA induce similar morphological changes and cell scattering via independent pathways.  相似文献   

16.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

17.
Interleukin-1 beta (Il-1 beta) and interleukin-1 alpha (Il-1 alpha) were shown to act as motility factors for the human breast carcinoma cell lines SK-BR-3 and ZR-75-1 in vitro. Both cytokines induced transition from the stationary to the motile phenotype (spreading). Il-1 beta stimulated translocation, shape change and random migration (chemokinesis) of SK-BR-3 cells as demonstrated by time-lapse video recordings and by a modified Boyden chamber assay. Interleukin-6 (Il-6) stimulated spreading of the SK-BR-3 cells; an additive effect with Il-1 beta on spreading and fast plasma membrane movements was evidenced. In the SK-BR-3 cell line, the signal transduction of Il-1 beta and Il-6 differed, since only the effect of Il-6 on spreading was sensitive to pertussis toxin. Both Il-1 beta and Il-6 required protein synthesis to stimulate spreading, since cycloheximide inhibited the effect of the cytokines. Induction of an autocrine loop of Il-6 in the SK-BR-3 cells by Il-1 beta was unlikely, since after stimulation with Il-1 beta, no induction of Il-6 activity was measured, nor was inhibition of stimulated spreading seen in the presence of an antiserum against Il-6. Addition of Il-8 or of an antiserum against Il-8 did not affect spreading. We concluded that Il-1 and Il-6 could act as motility factors for human breast carcinoma cells, in both an independent and an additive way.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
The growth of chemically induced mammary tumors is inhibited by both hormone manipulation as well as by retinoids. Numerous mammary carcinoma cell lines are also inhibited by retinoids. Co-treatment of estrogen receptor (ER)-positive breast cancer cells resulted in an additive effect in terms of inhibition of cellular proliferation. The addition of varying concentrations of retinoic acid (RA) to varying concentrations of tamoxifen (TMX) resulted in an additive effect on the inhibition of proliferation of the ER-positive human carcinoma cell lines (MCF-7). Co-treatment of MCF-7 cells over time with RA and TMX resulted in enhanced inhibition of growth. A similar phenomenon was observed when other synthetic retinoids were combined with TMX. This enhanced inhibition by the combination of retinoids and TMX was also observed with other ER-positive cell lines (ZR-75, T47-D), while no effect was noted on the ER-negative cell lines (MDA-MB-231, Hs578T).  相似文献   

20.
Mucin O-glycosylation is characterized in cancer by aberrant expression of immature carbohydrate structures (Tn, T, and sialyl-Tn antigens). The UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-T) family enzymes regulate the initial steps of mucin O-glycosylation and could be responsible for the altered glycosylation observed in cancer. Considering that we recently found the ppGalNAc-T6 mRNA expressed in breast carcinomas, we produced a highly specific monoclonal antibody (MAb T6.3) to assess the expression profile of ppGalNAc-T6 protein product in breast tissues. The expression of ppGalNAc-T6 by breast carcinoma cells was confirmed on MCF-7 and T47D cell lines. In formalin-fixed tissues, ppGalNAc-T6 expression was observed in 60/74 (81%) breast cancers, 21/23 (91.3%) adjacent ductal carcinoma in situ (DCIS), 4/20 benign breast lesions (2/2 sclerosing adenosis and 2/13 fibroadenoma), and in 0/5 normal breast samples. We observed a statistically significant association of ppGalNAc-T6 expression with T1 tumor stage. This fact, as well as the observation that ppGalNAc-T6 was strongly expressed in sclerosing adenosis and in most DCIS, suggests that ppGalNAc-T6 expression could be an early event during human breast carcinogenesis. Considering that an abnormal O-glycosylation greatly contributes to the phenotype and biology of breast cancer cells, ppGalNAc-T6 expression could provide new insights about breast cancer glycobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号