共查询到20条相似文献,搜索用时 3 毫秒
1.
Summary The commonest intracellular organelle characteristic of the Phylum Cnidaria or Coelenterata (Subclass Zoantharia) is the spirocyst. Based on scanning and transmission electron microscopy of the tentacles of sea anemones and corals, it appears that the tip of the spirocyst is either exposed to the environment or covered by a thin plasma membrane and often has a pebbled or knobby appearance. Surrounding the spirocyst tip is a ring-like structure which seems to be formed by the junction of the enclosing cell (the spirocyte) and the tip of the spirocyst. The spirocyst thread is continuous with the capsule wall and emerges from within the apical ring during discharge. No ciliary structures appear to be associated with spirocysts. Instead, two different types of microvilli have been found: short microvilli on the spirocyte itself and long microvilli furnished by the cell or cells surrounding the spirocyte. The significance of these findings is discussed in relation to the reception of stimuli for spirocyst discharge.Thanks are due Dr. Cadet Hand for the use of facilities of the Bodega Marine Laboratory of the University of California and Dr. R.K. Thompson, P. Nemanic, H. Sampson, F. Doroshow, E. Chang and B. Miller for expert technical assistance. The use of the facilities of the Electron Microscope Laboratory and the Electronics Research Laboratory of the University of California and the Electron Microscope Laboratory of the Florida State University is gratefully acknowledged. Part of this work was made possible by NSF Grant # GB-40547 to the senior author. 相似文献
2.
《Zoology (Jena, Germany)》2015,118(2):115-124
The octocoral Swiftia exserta has been utilized extensively in our laboratory to study innate immune reactions in Cnidaria such as wound healing, auto- and allo-graft reactions, and for some classical “foreign body” phagocytosis experiments. All of these reactions occur in the coenenchyme of the animal, the colonial tissue surrounding the axial skeleton in which the polyps are embedded, and do not rely on nematocysts or directly involve the polyps. In order to better understand some of the cellular reactions occurring in the coenenchyme, the present study employed several cytochemical methods (periodic acid–Schiff reaction, Mallory's aniline blue collagen stain, and Gomori's trichrome stain) and correlated the observed structures with electron microscopy (both scanning and transmission). Eight types of cells were apparent in the coenenchyme of S. exserta, exclusive of gastrodermal tissue: (i) epithelial ectoderm cells, (ii) oblong granular cells, (iii) granular amoebocytes, (iv) morula-like cells, (v) mesogleal cells, (vi) sclerocytes, (vii) axial epithelial cells, and (viii) cnidocytes with mostly atrichous isorhiza nematocysts. Several novel organizational features are now apparent from transmission electron micrographs: the ectoderm consists of a single layer of flat epithelial cells, the cell types of the mesoglea extend from beneath the thin ectoderm throughout the mesogleal cell cords, the organization of the solenia gastroderm consists of a single layer of cells, and two nematocyst types have been found. A new interpretation of the cellular architecture of S. exserta, and more broadly, octocoral biology is now possible. 相似文献
3.
Sequestration of nematocysts by divergent cnidarian predators: mechanism,function, and evolution 下载免费PDF全文
Animals have evolved diverse mechanisms to protect themselves from predators. Although such defenses are typically generated endogenously, some species have evolved the ability to acquire defenses by sequestering defensive chemicals or structures from other species. Chemical sequestration is widespread among animals, but the ability to sequester entire structures, such as organelles, appears to be rare. Here, we review information on the sequestration of functional nematocysts, the stinging organelles produced by Cnidaria, by divergent predators. Nematocyst sequestration has evolved multiple times, having been documented in Ctenophora, Acoelomorpha, Platyhelminthes, and Mollusca. For each of these phyla, we review the phylogenetic distribution, mechanisms, and possible functions of nematocyst sequestration. We estimate that nematocyst sequestration has evolved 9–17 times across these four phyla. Although data on the mechanism of sequestration remain limited, similarities across several groups are evident. For example, in multiple groups, nematocysts are transported within cells from the gut to peripheral tissues, and certain types of nematocysts are selectively sequestered over others, suggesting convergent evolution in some aspects of the sequestration process across phyla. Similarly, although the function of nematocyst sequestration has not been well documented, several studies do suggest that the nematocysts sequestered by these groups are effective for defense. We highlight several traits that are common to Ctenophora, Acoelomorpha, Platyhelminthes, and Mollusca and suggest hypotheses for how these traits could have played a role in the evolution of nematocyst sequestration. Finally, we propose a generalized working model for the steps that may lead to the evolution of nematocyst sequestration and discuss important areas for future research. 相似文献
4.
Xi‐Ping Dong Kelly Vargas John A. Cunningham Huaqiao Zhang Teng Liu Fang Chen Jianbo Liu Stefan Bengtson Philip C. J. Donoghue 《Palaeontology》2016,59(3):387-407
Fossilized embryos afford direct insight into the pattern of development in extinct organisms, providing unique tests of hypotheses of developmental evolution based in comparative embryology. However, these fossils can only be effective in this role if their embryology and phylogenetic affinities are well constrained. We elucidate and interpret the development of Olivooides from embryonic and adult stages and use these data to discriminate among competing interpretations of their anatomy and affinity. The embryology of Olivooides is principally characterized by the development of an ornamented periderm that initially forms externally and is subsequently formed internally, released at the aperture, facilitating the direct development of the embryo into an adult theca. Internal anatomy is known only from embryonic stages, revealing two internal tissue layers, the innermost of which is developed into three transversally arranged walls that partly divide the lumen into an abapertural region, interpreted as the gut of a polyp, and an adapertural region that includes structures that resemble the peridermal teeth of coronate scyphozoans. The anatomy and pattern of development exhibited by Olivooides appears common to the other known genus of olivooid, Quadrapyrgites, which differs in its tetraradial, as opposed to pentaradial symmetry. We reject previous interpretations of the olivooids as cycloneuralians, principally on the grounds that they lack a through gut and introvert, in embryo and adult. Instead we consider the affinities of the olivooids among medusozoan cnidarians; our phylogenetic analysis supports their classification as total‐group Coronata, within crown‐Scyphozoa. Olivooides and Quadrapyrgites evidence a broader range of life history strategies and bodyplan symmetry than is otherwise commonly represented in extant Scyphozoa specifically, and Cnidaria more generally. 相似文献
5.
刺细胞动物是一类具有刺细胞的水生无脊椎动物,分布在世界各地的海洋和淡水中.作为后生动物最早分化出的一支,刺细胞动物对研究后生动物的起源和早期演化具有极其重要的意义,也为研究后生动物系统发育、地层对比和古地理恢复等方面提供了重要的科研线索.本文简要介绍了刺细胞动物早期(埃迪卡拉纪至寒武纪苗岭世)的化石记录和研究现状,将刺... 相似文献
6.
Cnidarian envenomations cause a burning-pain sensation of which the underlying mechanisms are unknown. Activation of TRPV1, a non-selective cation channel expressed in nociceptive neurons, leads to cell depolarisation and pain. Here, we show in vitro and in vivo evidence for desensitization-dependent TRPV1 activation in cnidarian envenomations. Cnidarian venom induced a nociceptive reactivity, comparable to capsaicin, in laboratory rats, which could be reduced by the selective TRPV1 antagonist, BCTC. These findings are the first to explain at least part of the symptomology of cnidarian envenomations and provide insights into the design of more effective treatments for this global public health problem. 相似文献
7.
The common shallow water species of sea anemones (Actiniaria) and tube anemones (Ceriantharia) of the Azores are listed. Eight
species of sea anemones are mentioned, the species Cereus pedunculatus and Sagartia affinis being new records for the archipelago. Both species of Ceriantharia, namely Arachnanthus nocturnus and Pachycerianthus solitarius, are recorded from the Azores for the first time. Arachnanthus nocturnus is also recorded from the Cape Verde Islands and from Madeira for the first time.
Communicated by H.-D. Franke 相似文献
8.
9.
Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides 总被引:12,自引:0,他引:12
YUE ZHAO STEFAN BENGTSON 《Lethaia: An International Journal of Palaeontology and Stratigraphy》1999,32(2):181-195
Phosphatized specimens of Olivooides from the Early Cambrian of Shaanxi, China, represent a number of developmental stages. These include cleavage, gastrulation, organogenesis, cuticularization, pre-hatching, post-hatching and subsequent growth. This allows the reconstruction of a nearly full developmental sequence of this animal. Olivooides had large (600-870 μm in diameter), sphaerical eggs, indicating a high yolk content. Development was direct. Thus adult characters were forming already in the embryo, and there was no free larval stage. The embryonic development took place within a smooth protective membrane. Gastrulation probably was by polar ingression, and the blastopore appears to correspond to the aperture of the later stages. An embryonic cuticle formed which carried star-shaped structures, stellae, over the entire surface except for a radially folded non-stellate portion around the future aperture. At a later stage, the stellate cuticle was thrown into folds concentric with the aperture. This radially folded tissue then became more dominant. After hatching, the body assumed the shape of a strongly annulated cone, with the stellate cuticle forming the apical part and the folded cuticle forming a longitudinally striate cuticle around the aperture. Subsequent growth took place through the addition of striate tissue. A pentaradial symmetry of the body is suggested by lateral folds in the apical part. Olivooides is interpreted as a cnidarian, probably closely related to the scyphozoans. The conical test may have housed a polyp similar to the thecate polyps of modern coronate scyphozoans, but, unlike the latter, Olivooides had no visible attachment structures. There is no evidence for or against a free medusa stage. The prevalence of lecithotrophic direct developers in the Neoproterozoic and Cambrian, unless reflecting a preservational bias, casts some doubts on evolutionary models that assume larval planktotrophy to be primitive among metazoans. 相似文献
10.
11.
Hydrozoans represent an extremely diverse group of mostly colonial forms. Despite this tremendous diversity, many of the morphological
differences between hydrozoan species can be attributed to simple changes in the relative position of regions/structures along
the axes of the polyp and the stolon or hydrocaulus from which polyps bud. Many genes have been implicated in the specification
of positional information along the axis of the polyp. Knowledge from these studies in Hydra, and from comparative studies in Hydractinia polyp polymorphs, suggests that evolutionary changes in the regulation of axial patterning genes may be a prominent mechanism
underlying hydrozoan evolution. Despite the paucity of interspecies comparative expression information, hypotheses can be
formulated about the role of developmental regulatory genes in hydrozoan evolution from information available from Hydra. 相似文献
12.
13.
Park E Hwang DS Lee JS Song JI Seo TK Won YJ 《Molecular phylogenetics and evolution》2012,62(1):329-345
The phylum Cnidaria is comprised of remarkably diverse and ecologically significant taxa, such as the reef-forming corals, and occupies a basal position in metazoan evolution. The origin of this phylum and the most recent common ancestors (MRCAs) of its modern classes remain mostly unknown, although scattered fossil evidence provides some insights on this topic. Here, we investigate the molecular divergence times of the major taxonomic groups of Cnidaria (27 Hexacorallia, 16 Octocorallia, and 5 Medusozoa) on the basis of mitochondrial DNA sequences of 13 protein-coding genes. For this analysis, the complete mitochondrial genomes of seven octocoral and two scyphozoan species were newly sequenced and combined with all available mitogenomic data from GenBank. Five reliable fossil dates were used to calibrate the Bayesian estimates of divergence times. The molecular evidence suggests that cnidarians originated 741 million years ago (Ma) (95% credible region of 686-819), and the major taxa diversified prior to the Cambrian (543 Ma). The Octocorallia and Scleractinia may have originated from radiations of survivors of the Permian-Triassic mass extinction, which matches their fossil record well. 相似文献
14.
Life history traits and previous exposure predict resistance to UV irradiation in the freshwater cnidarian Hydra oligactis 下载免费PDF全文
Jácint Tökölyi Beatrix Kozma Flóra Sebestyén Máté Miklós Zoltán Barta 《Invertebrate Biology》2017,136(2):217-227
Abiotic stress is an important source of mortality for cnidarians and is likely to be a major factor shaping their life histories. In freshwater hydra, the ability to withstand exogenous sources of stress varies between species and populations, but little is known about the factors responsible for this variation. Here, we investigated resistance to UV irradiation in Hydra oligactis, a common temperate freshwater cnidarian. We collected polyps from 12 populations and propagated these asexually under standard conditions in the laboratory to obtain 69 laboratory clonal lines with a total of 324 polyps of different age. We measured the size of polyps and recorded their budding rate. In addition, a subset of animals was exposed to hormetic treatment, where experimental animals received a short, sublethal irradiation 2 d before testing their resistance to a higher dose. We investigated how life history traits (age, size, and budding rate), hormetic treatment, and the interaction between life history traits and hormetic treatment relate to the ability of hydra polyps to tolerate high doses of UV irradiation. In multivariate models controlling for the effect of other variables, stress tolerance was positively related to age (lower tolerance in freshly detached buds compared to adult hydra) and size (higher tolerance in polyps with a large body column). Budding rate was negatively associated with stress tolerance. Hormetic treatment increased resistance to UV irradiation, but we found no evidence for an interaction between hormetic response and any of the life history traits, suggesting that the ability to upregulate physiological defense mechanisms after exposure to mild stress does not depend on the life history background of the individuals. 相似文献
15.
J.R. Brock G.K. Bielmyer 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2013,158(3):150-158
The marine environment is subjected to contamination by a complex mixture of metals from various anthropogenic sources. Measuring the biological responses of organisms to a complex mixture of metals allows for examination of metal-specific responses in an environmentally realistic exposure scenario. To address this issue, the sea anemone, Aiptasia pallida was exposed to a control and a metal mixture (copper, zinc, nickel, and cadmium) at three exposure levels (10, 50, and 100 μg/L) for 7 days. Anemones were then transferred to metal-free seawater for an additional 7 days after the metal exposure to assess metal depuration and recovery. Metal accumulation, activity of the enzymes catalase, glutathione reductase, and carbonic anhydrase, as well as, cell density of the symbiotic zooxanthellae were measured over 14 days. Metal accumulation in A. pallida occurred in a concentration dependent manner over the 7-day exposure period. Altered enzyme activity and tentacle retraction of the host, as well as decreased zooxanthellae cell density were observed responses over the 7 days, after exposure to a metal concentration as low as 10 μg/L. Metal depuration and physiological recovery were dependent on both the metal and the exposure concentration. Understanding how A. pallida and their symbionts are affected by metal exposures in the laboratory may allow better understanding about the responses of symbiotic cnidarians in metal polluted aquatic environments. 相似文献
16.
Evolution and dynamics of branching colonial form in marine modular cnidarians: gorgonian octocorals
Multi-branched arborescent networks are common patterns for many sessile marine modular organisms but no clear understanding
of their development is yet available. This paper reviews new findings in the theoretical and comparative biology of branching
modular organisms (e.g. Octocorallia Cnidaria) and new hypotheses on the evolution of form are discussed. A particular characteristic
of branching Caribbean gorgonian octocorals is a morphologic integration at two levels of colonial organization based on whether
the traits are at the module or colony level. This revealed an emergent level of integration and modularity produced by the
branching process itself and not entirely by the module replication. In essence, not just a few changes at the module level
could generate changes in colony architecture, suggesting uncoupled developmental patterning for the polyp and branch level
traits. Therefore, the evolution of colony form in octocorals seems to be related to the changes affecting the process of
branching. Branching in these organisms is sub-apical, coming from mother branches, and the highly self-organized form is
the product of a dynamic process maintaining a constant ratio between mother and daughter branches. Colony growth preserves
shape but is a logistic growth-like event due to branch interference and/or allometry. The qualitative branching patterns
in octocorals (e.g. sea feathers, fans, sausages, and candelabra) occurred multiple times when compared with recent molecular
phylogenies, suggesting independence of common ancestry to achieve these forms. A number of species with different colony
forms, particularly alternate species (e.g. sea candelabrum), shared the same value for an important branching parameter (the
ratio of mother to total branches). According to the way gorgonians branch and achieve form, it is hypothesized that the diversity
of alternate species sharing the same narrow variance in that critical parameter for growth might be the product of canalization
(or a developmental constraint), where uniform change in growth rates and maximum colony size might explain colony differences
among species. If the parameter preserving shape in the colonies is fixed but colonies differ in their growth rates and maximum
sizes, heterochrony could be responsible for the evolution among some gorgonian corals with alternate branching. 相似文献
17.
Summary This is the first study based on numerical analysis of the abundance of 11 scleractinian corals of depths at between 100–210 m in the Red Sea twilight zone. Two distinct coral communities were found: a Leptoseris fragilis community at a depth of 100–130 m (zone 1) and a Dendrophillia horsti community below 130 m (zone 2, 3). Population densities and coral coverage are very low; distribution of individuals is highly clumped. Highest observed densities on 100 m2 were 2720 individuals for L. fraglis, 2720 for D. horsti and 2260 for Javania insignis. Calculated coverage rates were maximally 3.6% (L. fragilis), 0.08% (D. horsti) and 0.11% (J. insignis). L. fragilis, the only symbiont bearing coral, was very abundant. It has an unusual depth range for a photosynthesising coral. Coral density is only weakly correlated with hard bottom coverage. Species diversity with an average of 8 species is highest at 120–170 m and decreases in shallower and deeper water. The study depth range is a transient zone for coral distribution. It contains the upper distribution limits of a few deep sea corals and the lower ones of several shallower water species. Ahermatypic corals, collected at 160–170 m depth, were transplanted from their original depth to 159, 118, 70 and 40 m; after one year most species survived transplantation far beyond their upper distributional limits. The symbiotic L. fragilis, collected at 120 m, survived transplantation to deep water (159 m) as well as shallow zones (90, 70 and 40 m). The study demonstrates the feasibility of line-transect methods for coral community studies with a submersible. 相似文献
18.
VICKI B. PEARSE 《Invertebrate reproduction & development.》2013,57(1-3):201-213
Summary Diverse modes of clonal propagation were documented in tiny zooxanthellate sea anemones from the tropical Pacific. All were boloceroidids, as indicated by the tentacles' basal sphincter and the animals' swimming behavior. In one species, single tentacles were pinched off at the sphincter, shed into the coelenteron, and brooded there while regenerating into minute new polyps in ~4 days. Within a day of release, the propagules fed on live prey and swam by lashing the tentacles. A similar process occurs in another species studied, Bunodeopsis medusoides. In a third species a previously undescribed mode of replication was seen. These anemones bore a primary cycle of tentacles that engaged actively in feeding and swimming, were not shed, and showed no sign of producing polyps. Alternating with these tentacles were fan-like clusters of shorter tentacles that were relatively inactive in feeding and swimming. Despite the sphincter at the base of each of these clustered tentacles, they were never shed singly; instead, each cluster separated as a unit that then regenerated into a new polyp. Two other replicative modes were observed in similar, minute boloceroidid anemones collected together in the same habitat: longitudinal fission, not previously reported in boloceroidids, and pedal scission. Modes of replication in these actinians are more diverse than once thought, but the selective forces behind this variation are so far unexplored. These prolific anemones may regularly be taking advantage of their combination of swimming and regenerative abilities to achieve dispersal, not only by sexually produced larvae, but also by cloned polyps. 相似文献
19.
Musculature of the free-living stages of Polypodium hydriforme has been studied using phalloidin fluorescence method and confocal microscopy. P. hydriforme is a unique cnidarian possessing only smooth muscle cells situated within the mesoglea, not epithelial muscle cells, like the rest of cnidarians. Phalloidin fluorescence on whole mount preparations demonstrates an extensively developed subepidermal muscle system mostly consisting of long parallel fibers running along the tentacles. For the first time along with contracted muscle fibers we could clearly demonstrate relaxed fibers looking as long spirals. System of thin parallel circular F-actin positive fibers has been discovered outside of longitudinal muscles. The body of the animal and the mouth cone contain weakly developed parallel muscles. No special attachment of the muscle fibers to the tips of the tentacles or to the rim of the mouth has been observed. The results are discussed in connection with the "triploblastic" organization of P. hydriforme and its phylogenetic position. 相似文献
20.
The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity 下载免费PDF全文
Astrid S. Holzer Pavla Bartošová‐Sojková Ana Born‐Torrijos Alena Lövy Ashlie Hartigan Ivan Fiala 《Molecular ecology》2018,27(7):1651-1666
The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification‐linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known. 相似文献