首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding how organisms adapt to complex environments lies at the very heart of ecology and evolutionary biology. Clinal variation in traits related to fitness suggests a contribution of directional selection, and analyzing such variation has consequently become a key element in investigating adaptive evolution. In this study we examine climatic adaptation in the temperate-zone butterfly Lycaena tityrus across replicated populations from low-, (mid-) and high-altitudes, each reared at two different temperatures. In common garden experiments, high- compared to low-altitude populations showed a longer development time accompanied by reduced larval growth rates, increased cold- but decreased heat-stress resistance, and increased flight duration across a range of ambient temperatures. In contrast, differences in morphological traits such as pupal mass or wing size were negligible, suggesting that morphology is not necessarily indicative of flight performance. While patterns in stress resistance traits suggest adaptation to local temperatures, development times between populations were associated with differences in season length (enabling a second generation at lower altitudes, while high-altitude populations are monovoltine) rather than with temperature per se. Mid-altitude populations showed either intermediate patterns or patterns resembling low-altitude populations. Plastic responses to different rearing temperatures resulted, as expected, in reduced larval and pupal development times at higher temperatures accompanied by higher growth rates and decreased pupal mass. Further, butterflies reared at a lower temperature showed reduced chill-coma recovery times and decreased heat knock-down resistance as compared to those reared at a higher temperature. In summary, this study demonstrates local adaptations to regional climates, and that environmentally-induced plasticity can be as important as genetic factors in mediating adaptive responses.  相似文献   

2.
The ability to express heat‐shock proteins (HSP) under thermal stress is an essential mechanism for ectotherms to cope with unfavourable conditions. In this study, we investigate if Copper butterflies originating from different altitudes and/or being exposed to different rearing and induction temperatures show differences in HSP70 expression. HSP70 expression increased substantially at the higher rearing temperature in low‐altitude butterflies, which might represent an adaptation to occasionally occurring heat spells. On the other hand, high‐altitude butterflies showed much less plasticity in response to rearing temperatures, and overall seem to rely more on genetically fixed thermal stress resistance. Whether the latter indicates a higher vulnerability of high‐altitude populations to global warming needs further investigation. HSP70 expression increased with both colder and warmer induction temperatures.  相似文献   

3.
Interest in genetic variation at allozyme loci, especially at phosphoglucose isomerase (PGI), has considerably increased over recent decades. In this study, we investigated variation in food stress sensitivity and flight performance, two traits closely linked to individual fitness, across PGI genotypes in the sooty copper butterfly Lycaena tityrus. PGI genotype significantly affected growth rate and pupal mass, but had no overall effect on development time or flight performance. A significant genotype × sex × feeding treatment interaction showed that females from the rarest genotypes showed the strongest increase in development time under food stress. At the same time, these females exhibited the weakest reduction in body mass compared to non food-stressed individuals, while the most common PGI genotypes showed the highest reduction (significant interaction between genotype and feeding treatment). Such results suggest that effects of food stress on pupal mass may not pose a particularly strong selective pressure in L. tityrus. Generally, sex-specific differences in and effects of food stress on life-history traits were as expected, with, e.g., males showing a more rapid development, lower pupal mass and better flight performance than females.  相似文献   

4.
Anthropogenic climate change poses substantial challenges to biodiversity conservation. Effects of climate change on summer conditions and associated heat and desiccation stress have attracted much research interest, while the implications of changing winter conditions on hibernation have hitherto received fairly little attention. This is surprising as the latter may also strongly affect biodiversity. By investigating the effects of overwintering conditions on diapause and postdiapause survival in a temperate-zone butterfly, we found that warmer and moister winter conditions substantially decreased survival rates. However, detrimental effects were restricted to survival during diapause and subsequent development and had no clear effects on butterfly performance. We suggest that overwintering survival is an important driver of vulnerability to climate change. Our study stresses the importance of collating more data on overwintering survival in species with different hibernation strategies to predict the impact of ongoing climate change on biodiversity.  相似文献   

5.
Low heritability estimates in marginal or stress environments have often been used as one of the main justification for conducting selection work in environments with optimum or near‐optimum conditions for plant growth and grain yield. In this study, we have examined the relationships between grain yield and broad‐sense heritability in four groups of recombinant inbred lines (RILs) obtained from four barley crosses derived from parents differing in adaptation to stress. The RILs and the parents were grown in 13 combinations of years and locations (environments) in Syria and Jordan. Grain yields ranged from about 30 kg ha?1 to nearly 4000 kg ha?1 and genotype × environment interactions explained about half of the total variance for environmentally standardised data. Broad‐sense heritability in the individual year–location combinations varied from 0 to 0.68 and both the simple correlation and the rank correlation coefficients between grain yield and heritability were not significant. Genotype × years within individual locations, which measures the repeatability of a location in discriminating between genotypes, was also independent from the yield level, confirming that low‐yielding locations can be reliable selection environments. Also, there was no relationship between the type of cross and the magnitude of heritability in the various environments, but, as expected, the magnitude of heritability was significantly associated with the genetic distance between the parents. It is concluded that, holding all other factors affecting response to selection constant, concerns about the magnitude of heritability at low‐yielding locations are not justified and should not prevent them from being used as selection sites.  相似文献   

6.
The temporal dynamics of heat shock protein 70 (HSP70) expression in response to longer‐term acclimation and rapid hardening in the butterfly Lycaena tityrus is investigated. After a 1‐h exposure to 1 °C or 37 °C, HSP70 is quickly up‐regulated within 1 h and down‐regulated within 2 h. The fast dynamic of HSP70 expression is in contrast to the patterns found in organisms inhabiting more stable thermal environments, and is interpreted as an adaptation to the large and rapid temperature variation experienced by flying ectotherms. HSP70 expression is higher in males than in females, as well as in animals reared at 27 °C than at 20 °C, although it is very similar across the high and low induction temperatures. Animals reared at the higher temperature, however, respond less strongly to high‐temperature stress.  相似文献   

7.
8.
1. Ecological specialists are often regarded as most likely to be threatened by anthropogenic habitat changes but few relevant data are available on changes in the status of widespread species. 2. Grid square distribution maps have been used widely to measure rates of decline and target conservation resources but it is known that coarse grain mapping is not appropriate to identify declines in widespread species that initially contain numerous local populations per grid cell. Changes in the status of widespread species need to be quantified. 3. Present‐day habitat associations, determined from over 2000 transect counts, combined with data on historical and present‐day habitat distributions, reveal that the area of occupancy and population‐level rate of decline of the Small Copper butterfly Lycaena phlaeas is likely to have been of the order of 92 and 89% respectively, in 35 km2 of North Wales. Similar data on the species' major host plants Rumex acetosa and R. acetosella indicate possible declines in area occupied of 48 and 91%. If a 1‐km2 grid was applied to the landscape, and if L. phlaeas, R. acetosa, and R. acetosella had occupied all 1‐km2 cells in the study area in 1901 (non‐limestone cells for R. acetosella only), their declines would only have been recorded as 15, 9, and 35% respectively. 4. Many declining ecological specialists are threatened with extinction because of their initial rarity. At a population level, however, they may or may not be declining faster than less specialised species. The results presented here illustrate that some widespread species may have declined as much as many of Britain's rarities.  相似文献   

9.
During direct development the butterfly Lycaena tityrus was previously found to display sex-related reaction norms in response to temperature. Based on selection for protandry in males and fecundity selection for larger females, males favoured early emergence over large size, leading to a dramatic weight loss at higher temperatures, whereas females maintained similar weights throughout. Because males were able to avoid a weight reduction relative to females in spite of their shorter development at lower temperatures, sexual size dimorphism existed at higher temperatures only. In the present paper we compare sexual differences in life-history traits in L. tityrus between direct and diapause development at 25 °C. We demonstrate that, regardless of developmental pathway, protandry persisted and relative sexual size dimorphism, with females being larger, remained unchanged. Although diapausing individuals were less time-constrained, allowing them to grow to considerably higher final weights in both sexes, males were not able to reduce their weight loss relative to females. This is explained by the pressure to gain a developmental advantage solely during post-diapause development, whereas direct developing males may spread the burden over the whole larval period. Our results highlight the importance of considering sexual differences in selective pressures, which may influence central life-history traits in manifold ways.  相似文献   

10.
Nine cassava genotypes were grown at six representative sites in Nigeria for 3 years to study their response to cassava mosaic disease (CMD), investigate the influence of genotype × environment (G × E) interactions on their reactions to the disease, and identify genotypes with stability to the disease, using the Additive Main Effects and Multiplicative Interaction statistical model. Environments, genotypes and G × E interactions were highly significant (P < 0.01) for the disease. The G × E interactions accounted for 19.5% of the treatment sums of squares for CMD and influenced the relative ranking of genotypes across environments. The magnitude of the G × E interaction effect for CMD was larger than that of genotypes. Examination of the G × E interaction structure revealed specific areas where screening of cassava genotypes for resistance to CMD could be performed best. The study identified genotypes such as TMS 30001 and 63397 with resistance to CMD and CMD‐stable clone U/41044, which could be distributed to growers, and sites such as Ibadan and Ubiaja with high CMD severity for screening genotypes for reaction to CMD.  相似文献   

11.
The poor progress in breeding for resistance to ergot ( Claviceps purpurea [Fr.] Tul.) in rye ( Secale cereale L.) is attributed to the lack of appreciable genotypic variation for this trait. The present study was, therefore, undertaken to evaluate 52 indigenous and exotic genetic resources and 13 open-pollinated cultivars for ergot resistance. These 65 self-incompatible populations were evaluated in four environments with each entry plot surrounded by wheat plots on four sides. Inoculation with a pathogen mixture was done thrice during flowering and harvesting was done early by hand. Resistance traits were ergot incidence and severity. Logit-transformed data were subjected to analyses of variance. The lowest disease severity in any environment was 0.18%, and that was still higher than the official threshold of 0.1% for feed. In the pooled analysis across environments, significant genotypic differences as well as genotype × environment interaction were present. The correlation between ergot severity and pollen shedding was not significant indicating that genotypic differences were not affected by pollen shedding. Broad-sense heritability ( h 2 ) estimates were moderate (0.54–0.65). 'Halo', an old German cultivar, and the genetic resources 'Schmidt-Roggen' and 'Dukat', had low ergot severity (Halo having the lowest severity) as well as low disease incidence. The results document a significant, but moderate genotypic variance for ergot resistance among self-incompatible rye that can be exploited to breed ergot-resistant rye.  相似文献   

12.
Laine AL 《Ecology letters》2008,11(4):327-337
There have been numerous investigations of parasite local adaptation, a phenomenon important from the perspectives of both basic and applied evolutionary ecology. Recent work has demonstrated that temperature has striking effects on parasite performance by mediating trade-offs in parasite life history and through genotype × environment interactions. To test whether parasite local adaptation is mediated by temperature, I measured the performance of sympatric populations against allopatric populations of a fungal pathogen, Podosphaera plantaginis , on its host Plantago lanceolata , across a temperature gradient. I used data on parasite life history and epidemiology to derive fitness estimates to measure local adaptation. The results demonstrate unambiguously that trajectories of host–parasite co-evolution are tightly coupled with parasite adaptation to the abiotic habitat, as the strength, and even direction, of local adaptation varied with temperature. Patterns of local adaptation further depended on how parasite fitness was estimated, highlighting the importance of choosing relevant fitness measures in studies of local adaptation.  相似文献   

13.
Studies of altitudinal changes in phenotype and genotype can complement studies of latitudinal patterns and provide evidence of natural selection in response to climatic factors. In Drosophila melanogaster, latitudinal variation in phenotype and genotype has been well studied, but altitudinal patterns have rarely been investigated. We studied populations from six different altitudes varying between 35 m and 2173 m in the Firtina Valley in northeastern part of Turkey to evaluate clinal trends in lifespan under experimental conditions. Lifespan in the D. melanogaster populations was examined in relation to altitude, sex, temperature (25 °C and 29 °C), and dietary yeast concentration (5 g/L and 25 g/L). As expected high temperature decrease lifespan in all populations. However, it was shown that lifespan was slightly affected by dietary stress. We found that lifespan decreases significantly under thermal stress conditions with increasing altitude. Moreover, there was a slightly negative relationship between altitude and lifespan, which was closely associated with climatic factors such as temperature and precipitation, may suggest local adaptation to climate.  相似文献   

14.
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal.  相似文献   

15.
Structural colors result from an interaction between light and the fine-scale physical structure of a surface, and are often extremely bright, chromatic, and iridescent. Given that these visual features depend upon the aggregate abundance and architectural precision of photonic structures, structurally colored sexual ornaments seem well placed to indicate a range of mate quality characteristics. We tested this hypothesis by investigating the signaling potential of structural coloration in the sexually dimorphic butterfly Colias eurytheme. Males of this species display iridescent ultraviolet (UV) markings (arising from multilayer thin films) that overlay a broad area of yellowish-orange pigmentation on their dorsal wing surface. Only the structural UV has demonstrated function as a sexual signal; hence we predicted that it should contain more reliable phenotypic and/or genetic quality information, which would be indicated by phenotypic and/or genetically mediated condition dependence. In two split-family breeding experiments we manipulated condition by exposing full siblings to different stressors at two different juvenile life-history stages: (1) reduced larval host-plant quality and (2) transient heat/cold shocks during metamorphosis. Both stressors had profound effects on key developmental and life-history traits. Each stressor also significantly affected male dorsal coloration; thus, the expression of both structural and pigmentary coloration is phenotypically condition dependent. As predicted, the strongest condition dependence was evident in the brightness and angular visibility (i.e., iridescence) of the UV. Characteristics of both the iridescent UV and pigmentary orange also exhibited moderate-high and significant heritability (H(2) approximately h(2) approximately 0.4-0.9). However, genetic and residual variances did not increase under stress; thus, the observed condition dependence was not genetically mediated as predicted if wing color trait signals "good" genes for the ability to either withstand or circumvent developmental stress. The heightened stress sensitivity of the iridescent UV suggests that it offers an informative lifetime indicator of juvenile environments and, henceforth, adult male phenotypic condition, which may be salient to females seeking a highly fertile and/or nutritious male ejaculate.  相似文献   

16.
Lifespan extension under mild stress is frequently observed although difficult to quantify and generalize as previous studies differed substantially in specific experimental arrangements. We cultured the budding yeast in several environments defined by different temperature, source of energy, saline concentration or combinations of these factors. Cells obtained under different growth regimes were transferred to identical and generally nonstressful conditions except for an absence of organic carbon. Chronological lifespan (CL) of the starving cells showed an approximately common norm of reaction when plotted against the growth rate which served as a measure of stress intensity. CL increased roughly 50% in cultures raised at moderately slower pace, regardless of what particular single or multiple stress signals were present, and then decreased gradually with a deepening growth deceleration. We suggest that the strongly nonlinear relation between the metabolic rate and longevity can be a potent constraint controlling norms of phenotypic reaction in a variety of environmental gradients.  相似文献   

17.
K. Fischer  K. Fiedler 《Oecologia》2000,124(2):235-241
This study examined the effects of increased leaf N in natural food plants on oviposition, preimaginal survival, growth, and adult size of the butterfly Lycaena tityrus. Female butterflies did not discriminate between leaves of high and low N content. In accordance with previous studies, we found higher growth rates and concomitantly decreased development times at a high N level. However, because of high pupal (and larval) mortality (overall 73.0%) as well as a reduction in adult size (by ca. 8%) this was, overall, not beneficial to the butterflies. Thus, our results were not consistent with the broad interspecific trend that insect herbivore performance is positively correlated with leaf N. These findings undermine the general applicability of the N limitation hypothesis. As the detrimental effects were largely confined to the pupal and adult stages, results obtained from the larval phase only may not yield reliable results and must therefore be interpreted with caution. If negative effects of N enrichment are found more frequently in declining species inhabiting nutrient poor grassland, this will have major implications for the conservation of these species. Received: 30 November 1999 / Accepted: 14 February 2000  相似文献   

18.
Life-history theory predicts some cost to be associated with short development time, the most frequently assumed being small adult size. Alternatively, insects may increase developmental rates and grow fast to a larger size. Seasonal environments should select for phenotypic plasticity in growth and development, based on the need to complete development up to the diapausing stage before the onset of unfavourable season. Nevertheless, there must be some limit beyond which a compensation for a shorter development cannot be achieved. By comparing three geographically isolated populations of Lycaena hippothoe in common environments we show that in the Hungarian population development time seems to be traded off against size at maturity. This population is the only bivoltine one within this principally monovoltine species. Thus, realization of an additional generation per year, achieved through largely reduced development times, appears to carry the cost of substantially lower adult weights compared with other populations. In contrast, differences in development time in two monovoltine populations were not accompanied by a trade-off between development time and size. These results suggest that clear trade-offs are restricted to stressful situations, when compensation by an increase in growth rates is no longer feasible. We suggest the particularly short development time in the Hungarian population (facilitating a second generation), as well as the shorter development in an alpine (short vegetation period) compared with a western German population, to be adaptations to local climatic conditions. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 173–185.  相似文献   

19.
1. Despite growing knowledge on the relationship between ecological variables and individual immune function, data on the spatial variability of immune defence in invertebrate natural populations are scarce. 2. Here, we use replicated populations of the butterfly Lycaena tityrus from different altitudes to investigate genetic variation in the melanin‐based encapsulation response. As high‐ and low‐altitude populations differ in cuticular pupal melanisation, we further tested for any associations between pupal melanisation and parasite resistance. 3. Although pupal melanisation was higher at higher compared with lower altitudes (and at a higher compared with a lower rearing temperature), any obvious relations to the encapsulation response were absent. Further phenotypic correlations within groups were significant in one out of four cases only, suggesting that in L. tityrus encapsulation operates largely independent of cuticular melanisation. 4. A significant interaction between altitude and temperature indicated that high‐altitude animals show a stronger melanisation response than low‐altitude ones at the lower temperature and vice versa, indicating local adaptation to different climates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号