首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agrobacterium tumefaciens possesses two catalases, a bifunctional catalase-peroxidase, KatA and a homologue of a growth phase regulated monofunctional catalase, CatE. In stationary phase cultures and in cultures entering stationary phase, total catalase activity increased 2-fold while peroxidase activity declined. katA and catE were found to be independently regulated in a growth phase dependent manner. KatA levels were highest during exponential phase and declined as cells entered stationary phase, while CatE was detectable at early exponential phase and increased during stationary phase. Only small increases in H2O2 resistance levels were detected as cells entering stationary phase. The katA mutant was more sensitive to H2O2 than the parental strain during both exponential and stationary phase. Inactivation of catE alone did not significantly change the level of H2O2 resistance. However, the katA catE double mutant was more sensitive to H2O2 during both exponential and stationary phase than either of the single catalase mutants. The data indicated that KatA plays the primary role and CatE acts synergistically in protecting A. tumefaciens from H2O2 toxicity during all phases of growth. Catalase-peroxidase activity (KatA) was required for full H2O2 resistance. The expression patterns of the two catalases in A. tumefaciens reflect their physiological roles in the protection against H2O2 toxicity, which are different from other bacteria.  相似文献   

2.
Two catalase-negative strains of Lactobacillus plantarum and a strain producing the atypical, nonheme catalase were studied to determine if the ability to produce the atypical catalase conferred any growth advantage upon the producing strain. Both catalase-negative strains grew more rapidly than the catalase-positive strain under aerobic or anaerobic conditions in a glucose-containing, complex medium. Upon exhaustion of glucose from the medium, all three strains continued growth under aerobic but not under anaerobic conditions. The continued aerobic growth was accompanied by production of acetic acid in addition to the lactic acid produced during growth on glucose. Oxygen was taken up by exponential phase-cell suspensions grown on glucose when glucose or glycerol were used as substrates. Cells harvested from glucose-exhausted medium oxidized glucose, glycerol, and pyruvate. Oxygen utilization by a catalase-negative strain increased as did the specific activity of reduced nicotinamide adenine dinucleotide peroxidase during late growth in the glucose-exhausted medium. The catalase-positive strain and the catalase-negative strain tested both possessed low but readily detectable levels of superoxide dismutase throughout growth. The growth responses are discussed in terms of the presence of enzymes which would allow the cells to remove potentially damaging reduction products of O2.  相似文献   

3.

Background  

Human immune cells generate large amounts of reactive oxygen species (ROS) throughout the respiratory burst that occurs during inflammation. In inflammatory bowel diseases, a sustained and abnormal activation of the immune system results in oxidative stress in the digestive tract and in a loss of intestinal homeostasis. We previously showed that the heterologous production of the Lactobacillus plantarum ATCC14431 manganese-dependant catalase (MnKat) in Lb. casei BL23 successfully enhances its survival when exposed to oxidative stress. In this study, we evaluated the preventive effects of this antioxidative Lb. casei strain in a murine model of dextran sodium sulfate (DSS)-induced moderate colitis.  相似文献   

4.
The chimeric peroxidase PGdx of Haemophilus influenzae Rd belongs to a recently identified family of thiol peroxidases capable of reducing hydrogen peroxide as well as alkylhydroperoxides by means of glutathione redox cycling. In the present study, we constructed a H. influenzae Rd strain, deficient in its PGdx encoding gene (open reading frame HI0572). The mutant was shown by disk inhibition and liquid culture growth assays to exhibit increased susceptibility to organic hydroperoxides. The hampered growth was restored by complementing the interrupted gene on the genome with a replicating plasmid bearing an intact copy of the gene, hereby rejecting the possible influences of polar effects. Elevated levels of hydrogen peroxide scavenging activity, due to the catalase HktE, were measured in the absence of a functional pgdx gene rendering the mutant more resilient against hydrogen peroxide. On the other hand, after initiation of the stationary phase, aerobic cultures of the pgdx mutant were practically devoid of living cells, whereas wild-type counterparts retained viability. This observed feature was alleviated by complementation with the functional gene or with the addition of catalase.  相似文献   

5.
The root nodule bacteria (free-living cells) tested had higher susceptibility to hydrogen peroxide (H2O2) than the other genera of aerobic or facultative anaerobic bacteria tested. The catalase activities tended to have a positive correlation with H2O2 resistance among all bacteria tested. Addition of a catalase inhibitor such as 3-amino-1, 2, 4-triazole increased the susceptibility to H2O2. These results suggest that the lower catalase activity brings about the higher susceptibility of root nodule bacteria to H2O2. Root nodule bacteria seemed to have two or three catalase isozymes during growth and their catalase activities were higher in log phase than in stationary phase, contrary to other genera of bacteria tested.  相似文献   

6.
7.
Vattanaviboon P  Mongkolsuk S 《Gene》2000,241(2):259-265
Analysis of the Xanthomonas campestris pv. phaseoli (Xp) catalase profile using an activity gel revealed at least two distinct monofunctional catalase isozymes denoted Kat1 and Kat2. Kat1 was expressed throughout growth, whereas Kat2 was expressed only during the stationary phase of growth. The nucleotide sequence of a previously isolated monofunctional catalase gene, Xp katE, was determined. The deduced amino acid sequence of Xp KatE showed a high percentage identity to an atypical group of monofunctional catalases that includes the well-characterized E. coli katE. Expression of Xp katE was growth phase-dependent but was not inducible by oxidants. In addition, growth of Xp in a carbon-starvation medium induced expression of the gene. An Xp katE mutant was constructed, and analysis of its catalase enzyme pattern showed that Xp katE coded for the Kat2 isozyme. Xp katE mutant had resistance levels similar to the parental strain against peroxide and superoxide killing at both exponential and stationary phases of growth. Interestingly, the level of total catalase activity in the mutant was similar to that of the parental strain even in stationary phase. These results suggest the existence of a novel compensatory mechanism for the activity of Xp catalase isozymes.  相似文献   

8.
A comparative study of the changes in the components of the antioxidant defense system (ADS), the activity of superoxide dismutase (SOD) and catalase and the level of extractable SH-groups, during the growth of wild-type and mutant (white collar-1 and white colar-2) Neurospora crassa strains was performed. Oxidative stress developing during spore germination and upon the transition to a stationary growth phase was accompanied in all strains by an increase in the level of extractable SH-groups and SOD activity, whereas the total catalase activity decreased during growth. However, in contrast to the wild-type strain, the activity of the catalase in the mutant strains wc-1 and wc-2 slightly increased upon the transition to the stationary phase. In the wc-2 mutant, SOD activity and the level of extractable SH-groups in the exponential growth phase were always lower than in the wild-type and wc-2 strains. The role of wc-1 and wc-2 genes in the level regulation of reactive oxygen species is discussed.  相似文献   

9.
We studied the biosynthesis of Bacillus intermedius glutamyl endopeptidase in the recombinant Bacillus subtilis strain AJ73 delta58.21 during the stationary growth phase. We optimized the composition of the culture medium to favor effective enzyme production during the stationary growth phase, and found that the nutritional requirements for glutamyl endopeptidase synthesis were different in the stationary phase and growth retardation phase. Proteinase accumulation was activated by complex organic substrates (casein and gelatin). During final stages of the culture growth, the enzyme production was stimulated by Ca2+, Mn2+, and Co2+ and inhibited by Zn2+, Fe2+, and Cu2+. The synthesis of glutamyl endopeptidase in the late stationary phase was not inhibited by glucose, unlike that in the trophophase during proliferation. We conclude that the regulatory mechanisms of proteinase synthesis during vegetative growth and sporulation are different.  相似文献   

10.
We used metabolic engineering to produce wine yeasts with enhanced resistance to glucose deprivation conditions. Glycogen metabolism was genetically modified to overproduce glycogen by increasing the glycogen synthase activity and eliminating glycogen phosphorylase activity. All of the modified strains had a higher glycogen content at the stationary phase, but accumulation was still regulated during growth. Strains lacking GPH1, which encodes glycogen phosphorylase, are unable to mobilize glycogen. Enhanced viability under glucose deprivation conditions occurs when glycogen accumulates in the strain that overexpresses GSY2, which encodes glycogen synthase and maintains normal glycogen phosphorylase activity. This enhanced viability is observed under laboratory growth conditions and under vinification conditions in synthetic and natural musts. Wines obtained from this modified strain and from the parental wild-type strain don't differ significantly in the analyzed enological parameters. The engineered strain might better resist some stages of nutrient depletion during industrial use.  相似文献   

11.
An efficient cyanide-degrading Bacillus pumilus strain   总被引:1,自引:0,他引:1  
A Gram-positive, aerobic, endospore-forming bacterium was isolated by an enrichment technique for the ability to degrade cyanide and was identified as a Bacillus pumilus strain. The bacterium rapidly degraded 100 mg l-1 of free cyanide in the absence of added inorganic and organic substances. The ability to degrade cyanide was linked to the growth phase and was not exhibited before late exponential/early stationary phase. Cyanide-degrading activity could not be induced before this time by the addition of 20 mg cyanide l-1. Production of the cyanide-degrading activity required 0.01 mg Mn2+ l-1 and did not occur at Mn2+ concentrations below 0.002 mg l-1. Cyanide-degrading activity was intracellular and cell-free extracts rapidly degraded cyanide.  相似文献   

12.
Summary A number of strains of Saccharomyces cerevisiae, wild type or respiratory deficient, were grown on glucose, galactose or raffinose. Specific activities of catalase T were about tenfold higher in late stationary wild type cells grown on glucose than in wild type cells harvested when glucose had just disappeared completely from the medium, or in respiratory deficient strains (rho, mit, pet) grown to stationary phase.Catalase A activity is completely absent in wild type cells grown to zero percent glucose or in respiratory deficient cells grown on glucose to stationary phase. High catalase A activity was detected in derepressed wild type cells and in a strain carrying the op 1 (pet 9) mutation, although this strain is unable to grow on nonfermentable carbon sources. All respiratory deficient strains tested have low, but significant catalase A activities after growth on galactose or raffinose.Wild type cells harvested during growth on glucose and rho-cells grown on low glucose to stationary phase contain enzymatically inactive catalase A protein. The apoprotein of the enzyme is apparently accumulated in rho-cells whereas glucose-repressed wild type cells seem to contain a mixture of apoprotein and heme-containing catalase A monomer.These results show that a source of chemical energy, probably ATP, is required for derepression of yeast catalase from catabolite repression. At least in the case of catalase A, energy produced by respiration is necessary if catabolite repression is caused by glucose. If less repressing sugars are utilized, ATP derived from fermentation appears sufficient for partial derepression. Formation of the active enzyme can apparently be influenced by carbon catabolite repression at different points: (1) at the level of protein synthesis, (2) at the stage of heme incorporation, (3) at the level of formation of the enzymatically active tetramer.  相似文献   

13.
R G Riley  B J Kolodziej 《Microbios》1976,16(65-66):219-226
Glucose when present as a sole organic carbon source in a mineral salts medium is dissimilated by Caulobacter crescentus ATCC 15252 (strain CB-2) by the Entner-Doudoroff pathway throughout the culture cycle (exponential, transition, and stationary phase). Most of the available glucose that is present at the onset of exponential growth is assimilated by the cells during the transition phase or the period associated with stalk cell development. Swarmer cell development is minimized during this phase. During this same period the pH drops from 6.1 to 4.9 as a result of an abundant excretion of acetic acid. Simultaneously, poly-beta-hydroxybutyrate accumulates within the cells at an accelerated rate. An NADP-dependent glyceraldehyde-3-phosphate dehydrogenase is also present throughout the culture cycle which subsumes the presence of the subsequent enzymes of the Embden-Meyerhof-Parnas pathway in pyruvate formation. An operative tricarboxylic acid cycle is associated with cells throughout the culture cycle.  相似文献   

14.
Lactobacillus plantarum ATCC 8014 grew on melibiose at 30 C, but not at 37 C, although it grew on galactose or lactose at either temperature. ATCC 8014 grown on lactose at 30 or 37 C accumulated melibiose slowly, suggesting that melibiose may partly be transported by a lactose transport system. A lactose-negative mutant, NTG 21, derived from ATCC 8014 was isolated. The mutant was totally deficient in lactose transport, but retained normal melibiose transport activity. In NTG 21, the melibiose transport activity was induced by melibiose at 30 C, but not at 37 C. The transport activity itself was found to be stable for at least 3 hr at 37 C, suggesting that the induction process in the cytoplasm rather than the inducer entrance is temperature-sensitive in the organism. The organism also failed to form alpha-galactosidase at 37 C when grown on melibiose. The enzyme synthesis, however, was induced by galactose in NTG 21 (and also by lactose in ATCC 8014) even at 37 C, indicating that the induction of the enzyme is essentially not temperature-sensitive. In NTG 21, melibiose transport system and alpha-galactosidase were induced by galactose, melibiose and o-nitrophenyl-alpha-D-galactopyranoside when the strain was grown at 30 C. Raffinose induced melibiose transport system only a little, while it was a good inducer for alpha-galactosidase. Inhibition studies revealed that galactose may be a weak substrate of the melibiose transport system; no inhibition was demonstrated with lactose and raffinose.  相似文献   

15.
A metabolically engineered Escherichia coli strain SBS550MG (pHL413) was used in this study to investigate the impact of various culture operating conditions for improving the specific succinate production rate for better final titer while maintaining the theoretical succinate yield on glucose in multiphase fed-batch cultures. Previously, we reported that changes in the level of aeration during the cell growth phase significantly modified gene expression profiles and metabolic fluxes in this system (Martinez et al. 2010). Based on these observations, the examination of culture conditions was mainly focused on the aerobic growth phase. It was found that 2–5 h of low dissolved oxygen culture during the aerobic phase improves cell productivity, but pH control during the aerobic phase was not favorable for the system. Cell viability has been identified as a major limiting factor for succinate production. Supplementing LB medium and betaine, an anti-osmotic stress reagent, did not improve cell activity. A higher succinate titer (537.8 mM) using the current metabolic engineering E. coli strain was achieved, which can potentially be improved further by increasing cell viability.  相似文献   

16.
We used metabolic engineering to produce wine yeasts with enhanced resistance to glucose deprivation conditions. Glycogen metabolism was genetically modified to overproduce glycogen by increasing the glycogen synthase activity and eliminating glycogen phosphorylase activity. All of the modified strains had a higher glycogen content at the stationary phase, but accumulation was still regulated during growth. Strains lacking GPH1, which encodes glycogen phosphorylase, are unable to mobilize glycogen. Enhanced viability under glucose deprivation conditions occurs when glycogen accumulates in the strain that overexpresses GSY2, which encodes glycogen synthase and maintains normal glycogen phosphorylase activity. This enhanced viability is observed under laboratory growth conditions and under vinification conditions in synthetic and natural musts. Wines obtained from this modified strain and from the parental wild-type strain don't differ significantly in the analyzed enological parameters. The engineered strain might better resist some stages of nutrient depletion during industrial use.  相似文献   

17.
The resistance to stresses as starvation, the presence of ethanol, sulfite and low pH, is a fundamental prerequisite for starter cultures used to induce malolactic fermentation in wine. In order to evaluate stress resistance of cells undergone starvation, cells viability in laboratory cultures of Oenococcus oeni VP01 strain was monitored during prolonged stationary growth phase. Once entered the stationary phase, strain VP01 showed 99% reduction of cell viability within 4 days. The remaining cells population maintained viability over 70 days and, when plated on agar medium, generated small colonies. The occurrence of this phenomenon was associated to stress resistance, since 10-day-old cells resulted more resistant than 3-day-old cells to ethanol and low pH conditions. No genomic mutations were revealed by pulse-field gel electrophoresis (PFGE) analysis in aged cultures. Total protein analysis by bidimensional electrophoresis highlighted differential protein expression in cultures differentially aged. It was demonstrated that O. oeni starving cultures at the stationary phase are constituted by dynamic cell populations. These results offer interesting perspective for a better understanding of cells behavior when inoculated in wine.  相似文献   

18.
The bacterium Acetobacter pasteurianus can ferment acetic acid, a process that proceeds at the risk of oxidative stress. To understand the stress response, we investigated catalase and OxyR in A. pasteurianus NBRC3283. This strain expresses only a KatE homolog as catalase, which is monofunctional and growth dependent. Disruption of the oxyR gene increased KatE activity, but both the katE and oxyR mutant strains showed greater sensitivity to hydrogen peroxide as compared to the parental strain. These mutant strains showed growth similar to the parental strain in the ethanol oxidizing phase, but their growth was delayed when cultured in the presence of acetic acid and of glycerol and during the acetic acid peroxidation phase. The results suggest that A. pasteurianus cells show different oxidative stress responses between the metabolism via the membrane oxidizing pathway and that via the general aerobic pathway during acetic acid fermentation.  相似文献   

19.
RpoE2 is an extracytoplasmic σ factor produced by Sinorhizobium meliloti during stationary growth phase. Its inactivation affected the synthesis of the superoxide dismutase, SodC, and catalase, KatC. The absence of SodC within the cell did not result in an increased sensitivity to extracellular superoxides. In contrast, the absence of KatC affected the resistance of S. meliloti to H2O2 during the stationary growth phase. A katC strain behaved as an rpoE2 strain during an H2O2 challenge, suggesting that the H2O2 sensitivity of the rpoE2 strain resulted only from the lack of KatC in this strain.  相似文献   

20.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号