首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimeric circular chromosomes, formed by recombination between monomer sisters, cannot be segregated to daughter cells at cell division. XerCD site-specific recombination at the Escherichia coli dif site converts these dimers to monomers in a reaction that requires the DNA translocase FtsK. Short DNA sequences, KOPS (GGGNAGGG), which are polarized toward dif in the chromosome, direct FtsK translocation. FtsK interacts with KOPS through a C-terminal winged helix domain gamma. The crystal structure of three FtsKgamma domains bound to 8 bp KOPS DNA demonstrates how three gamma domains recognize KOPS. Using covalently linked dimers of FtsK, we infer that three gamma domains per hexamer are sufficient to recognize KOPS and load FtsK and subsequently activate recombination at dif. During translocation, FtsK fails to recognize an inverted KOPS sequence. Therefore, we propose that KOPS act solely as a loading site for FtsK, resulting in a unidirectionally oriented hexameric motor upon DNA.  相似文献   

2.
Escherichia coli FtsK protein couples cell division and chromosome segregation. It is a component of the septum essential for cell division. It also acts during chromosome dimer resolution by XerCD-specific recombination at the dif site, with two distinct activities: DNA translocation oriented by skewed sequence elements and direct activation of Xer recombination. Dimer resolution requires that the skewed elements polarize in opposite directions 30-50 kb on either side of dif. This constitutes the DIF domain, approximately coincident with the region where replication terminates. The observation that the ftsK1 mutation increases recombination near dif was exploited to determine whether the chromosome region on which FtsK acts is limited to the DIF domain. A monitoring of recombination activity at multiple loci in a 350 kb region to the left of dif revealed (i) zones of differing activities unconnected to dimer resolution and (ii) a constant 10-fold increase of recombination in the 250 kb region adjacent to dif in the ftsK1 mutant. The latter effect allows definition of an FTSK domain whose total size is at least fourfold that of the DIF domain. Additional analyses revealed that FtsK activity responds to polarization in the whole FTSK domain and that displacement of the region where replication terminates preserves differences between recombination zones. Our interpretation is that translocation by FtsK occurs mostly on DNA belonging to a specifically organized domain of the chromosome, when physical links between either dimeric or still intercatenated chromosomes force this DNA to run across the septum at division.  相似文献   

3.
In Escherichia coli, the ATP-dependent DNA translocase FtsK transports DNA across the site of cell division and activates recombination by the XerCD recombinases at a specific site on the chromosome, dif, to ensure the last stages of chromosome segregation. DNA transport by FtsK is oriented by 8-base-pair asymmetric sequences ('KOPS'). Here we provide evidence that KOPS promote FtsK loading on DNA and that translocation is oriented at this step.  相似文献   

4.
Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.  相似文献   

5.
The bacterial septum-located DNA translocase FtsK coordinates circular chromosome segregation with cell division. Rapid translocation of DNA by FtsK is directed by 8-base-pair DNA motifs (KOPS), so that newly replicated termini are brought together at the developing septum, thereby facilitating completion of chromosome segregation. Translocase functions reside in three domains, alpha, beta and gamma. FtsKalphabeta are necessary and sufficient for ATP hydrolysis-dependent DNA translocation, which is modulated by FtsKgamma through its interaction with KOPS. By solving the FtsKgamma structure by NMR, we show that gamma is a winged-helix domain. NMR chemical shift mapping localizes the DNA-binding site on the gamma domain. Mutated proteins with substitutions in the FtsKgamma DNA-recognition helix are impaired in DNA binding and KOPS recognition, yet remain competent in DNA translocation and XerCD-dif site-specific recombination, which facilitates the late stages of chromosome segregation.  相似文献   

6.
Archaea of the genus Sulfolobus have a single-circular chromosome with three replication origins. All three origins fire in every cell in every cell cycle. Thus, three pairs of replication forks converge and terminate in each replication cycle. Here, we report 2D gel analyses of the replication fork fusion zones located between origins. These indicate that replication termination involves stochastic fork collision. In bacteria, replication termination is linked to chromosome dimer resolution, a process that requires the XerC and D recombinases, FtsK and the chromosomal dif site. Sulfolobus encodes a single-Xer homologue and its deletion gave rise to cells with aberrant DNA contents and increased volumes. Identification of the chromosomal dif site that binds Xer in vivo, and biochemical characterization of Xer/dif recombination revealed that, in contrast to bacteria, dif is located outside the fork fusion zones. Therefore, it appears that replication termination and dimer resolution are temporally and spatially distinct processes in Sulfolobus.  相似文献   

7.
FtsK, a literate chromosome segregation machine   总被引:6,自引:3,他引:3  
  相似文献   

8.

Background

The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV.

Methodology

We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a ∼400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPS-recognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions.

Significance

Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last steps of chromosome segregation and to their coupling with cell division by FtsK.  相似文献   

9.
In the model organism E. coli, recombination mediated by the related XerC and XerD recombinases complexed with the FtsK translocase at specialized dif sites, resolves dimeric chromosomes into free monomers to allow efficient chromosome segregation at cell division. Computational genome analysis of Helicobacter pylori, a slow growing gastric pathogen, identified just one chromosomal xer gene (xerH) and its cognate dif site (difH). Here we show that recombination between directly repeated difH sites requires XerH, FtsK but not XerT, the TnPZ transposon associated recombinase. xerH inactivation was not lethal, but resulted in increased DNA per cell, suggesting defective chromosome segregation. The xerH mutant also failed to colonize mice, and was more susceptible to UV and ciprofloxacin, which induce DNA breakage, and thereby recombination and chromosome dimer formation. xerH inactivation and overexpression each led to a DNA segregation defect, suggesting a role for Xer recombination in regulation of replication. In addition to chromosome dimer resolution and based on the absence of genes for topoisomerase IV (parC, parE) in H. pylori, we speculate that XerH may contribute to chromosome decatenation, although possible involvement of H. pylori's DNA gyrase and topoisomerase III homologue are also considered. Further analyses of this system should contribute to general understanding of and possibly therapy development for H. pylori, which causes peptic ulcers and gastric cancer; for the closely related, diarrheagenic Campylobacter species; and for unrelated slow growing pathogens that lack topoisomerase IV, such as Mycobacterium tuberculosis.  相似文献   

10.
Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the 'bottom' strand. The resulting recombinase-DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD-FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.  相似文献   

11.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif sites occurs efficiently only when FtsK is present and under conditions that allow chromosomal dimer formation, whereas recombination at the plasmid sites cer and psi is independent of these factors. We propose that the chromosome dimer- and FtsK-dependent process that activates Xer recombination at plasmid dif also activates Xer recombination at chromosomal dif. The defects in chromosome segregation that result from mutation of the FtsK C-terminus are attributable to the failure of Xer recombination to resolve chromosome dimers to monomers. Conditions that lead to FtsK-independent Xer recombination support the hypothesis that FtsK acts on Holliday junction Xer recombination intermediates.  相似文献   

12.
Chromosome dimers form in bacteria by recombination between circular chromosomes. Resolution of dimers is a highly integrated process involving recombination between dif sites catalysed by the XerCD recombinase, cell division and the integrity of the division septum-associated FtsK protein and the presence of dif inside a restricted region of the chromosome terminus, the dif activity zone (DAZ). We analyse here how these phenomena collaborate. We show that (i) both inter- and intrachromosomal recombination between dif sites are activated by their presence inside the DAZ; (ii) the DAZ-specific activation only occurs in conditions supporting the formation of chromosome dimers; (iii) overexpression of FtsK leads to a general increase in dif recombination irrespective of dif location; (iv) overexpression of FtsK does not improve the ability of dif sites inserted outside the DAZ to resolve chromosome dimers. Our results suggest that the formation of an active XerCD-FtsK-dif complex is restricted to when a dimer is present, the features of chromosome organization that determine the DAZ playing a central role in this control.  相似文献   

13.
Chromosome dimers in Escherichia coli are resolved at the dif locus by two recombinases, XerC and XerD, and the septum-anchored FtsK protein. Chromosome dimer resolution (CDR) is subject to strong spatiotemporal control: it takes place at the time of cell division, and it requires the dif resolution site to be located at the junction between the two polarized chromosome arms or replichores. Failure of CDR results in trapping of DNA by the septum and RecABCD recombination (terminal recombination). We had proposed that dif sites of a dimer are first moved to the septum by mechanisms based on local polarity and that normally CDR then occurs as the septum closes. To determine whether FtsK plays a role in the mobilization process, as well as in the recombination reaction, we characterized terminal recombination in an ftsK mutant. The frequency of recombination at various points in the terminus region of the chromosome was measured and compared with the recombination frequency on a xerC mutant chromosome with respect to intensity, the region affected, and response to polarity distortion. The use of a prophage excision assay, which allows variation of the site of recombination and interference with local polarity, allowed us to find that cooperating FtsK-dependent and -independent processes localize dif at the septum and that DNA mobilization by FtsK is oriented by the polarity probably due to skewed sequence motifs of the mobilized material.  相似文献   

14.
Bacteria with circular chromosomes have evolved systems that ensure multimeric chromosomes, formed by homologous recombination between sister chromosomes during DNA replication, are resolved to monomers prior to cell division. The chromosome dimer resolution process in Escherichia coli is mediated by two tyrosine family site-specific recombinases, XerC and XerD, and requires septal localization of the division protein FtsK. The Xer recombinases act near the terminus of chromosome replication at a site known as dif (Ecdif). In Bacillus subtilis the RipX and CodV site-specific recombinases have been implicated in an analogous reaction. We present here genetic and biochemical evidence that a 28-bp sequence of DNA (Bsdif), lying 6 degrees counterclockwise from the B. subtilis terminus of replication (172 degrees ), is the site at which RipX and CodV catalyze site-specific recombination reactions required for normal chromosome partitioning. Bsdif in vivo recombination did not require the B. subtilis FtsK homologues, SpoIIIE and YtpT. We also show that the presence or absence of the B. subtilis SPbeta-bacteriophage, and in particular its yopP gene product, appears to strongly modulate the extent of the partitioning defects seen in codV strains and, to a lesser extent, those seen in ripX and dif strains.  相似文献   

15.
Chromosome dimers, which frequently form in Escherichia coli, are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific site on the chromosome, dif, together with the cell division protein FtsK. The C-terminal domain of FtsK (FtsK(C)) is a DNA translocase implicated in helping synapsis of the dif sites and in locally promoting XerD strand exchanges after synapse formation. Here we show that FtsK(C) ATPase activity is directly involved in the local activation of Xer recombination at dif, by using an intermolecular recombination assay that prevents significant DNA translocation, and we confirm that FtsK acts before Holliday junction formation. We show that activation only occurs with a DNA segment adjacent to the XerD-binding site of dif. Only one such DNA extension is required. Taken together, our data suggest that FtsK needs to contact the XerD recombinase to switch its activity on using ATP hydrolysis.  相似文献   

16.
The dif locus is a site-specific recombination site located within the terminus region of the chromosome of Escherichia coli. Recombination at dif resolves circular dimer chromosomes to monomers, and this recombination requires the XerC, XerD and FtsK proteins, as well as cell division. In order to characterize other enzymes that interact at dif, we tested whether quinolone-induced cleavage occurs at this site. Quinolone drugs, such as norfloxacin, inhibit the type 2 topoisomerases, DNA gyrase and topoisomerase IV, and can cleave DNA at sites where these enzymes interact with the chromosome. Using strains in which either DNA gyrase or topoisomerase IV, or both, were resistant to norfloxacin, we determined that specific interactions between dif and topoisomerase IV caused cleavage at that site. This interaction required XerC and XerD, but did not require the C-terminal region of FtsK or cell division.  相似文献   

17.
Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.  相似文献   

18.
The FtsK translocase pumps dsDNA directionally at ~5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.  相似文献   

19.
Escherichia coli FtsK is a multifunctional protein that couples cell division and chromosome segregation. Its N-terminal transmembrane domain (FtsK(N)) is essential for septum formation, whereas its C-terminal domain (FtsK(C)) is required for chromosome dimer resolution by XerCD-dif site-specific recombination. FtsK(C) is an ATP-dependent DNA translocase. In vitro and in vivo data point to a dual role for this domain in chromosome dimer resolution (i) to directly activate recombination by XerCD-dif and (ii) to bring recombination sites together and/or to clear DNA from the closing septum. FtsK(N) and FtsK(C) are separated by a long linker region (FtsK(L)) of unknown function that is highly divergent between bacterial species. Here, we analysed the in vivo effects of deletions of FtsK(L) and/or of FtsK(C), of swaps of these domains with their Haemophilus influenzae counterparts and of a point mutation that inactivates the walker A motif of FtsK(C). Phenotypic characterization of the mutants indicated a role for FtsK(L) in cell division. More importantly, even though Xer recombination activation and DNA mobilization both rely on the ATPase activity of FtsK(C), mutants were found that can perform only one or the other of these two functions, which allowed their separation in vivo for the first time.  相似文献   

20.
In several bacterial species, the faithful completion of chromosome partitioning is known to be promoted by a conserved family of DNA translocases that includes Escherichia coli FtsK and Bacillus subtilis SpoIIIE. FtsK localizes at nascent division sites during every cell cycle and stimulates chromosome decatenation and the resolution of chromosome dimers formed by recA -dependent homologous recombination. In contrast, SpoIIIE localizes at sites where cells have divided and trapped chromosomal DNA in the membrane, which happens during spore development and under some conditions when DNA replication is perturbed. SpoIIIE completes chromosome segregation post-septationally by translocating trapped DNA across the membrane. Unlike E. coli , B. subtilis contains a second uncharacterized FtsK/SpoIIIE-like protein, SftA (formerly YtpS). We report that SftA plays a role similar to FtsK during each cell cycle but cannot substitute for SpoIIIE in rescuing trapped chromosomes. SftA colocalizes with FtsZ at nascent division sites but not with SpoIIIE at sites of chromosome trapping. SftA mutants divide over unsegregated chromosomes more frequently than wild-type unless recA is inactivated, suggesting that SftA, like FtsK, stimulates chromosome dimer resolution. Having two FtsK/SpoIIIE paralogues is not conserved among endospore-forming bacteria, but is highly conserved within several groups of soil- and plant-associated bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号