首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor metastasis plays a major role in the morbidity and mortality of cancer patients. Among solid tumors that undergo metastasis, there is often a predilection to metastasize to a particular organ with, for example, prostate cancer preferentially metastasizing to bones and colon cancer preferentially metastasizing to the liver. Although many factors are thought to be important in establishing permissiveness for metastasis, the reasons for organ-specific predilection of each tumor are not understood. Using a B16 murine melanoma model, we tested the hypothesis that organ-specific NK cell subsets play a critical role in organ-specific metastasis of this tumor. Melanoma cells, given intravenously, readily colonized the lungs but not the liver. NK cell depletion (either iatrogenically or by using genetically targeted mice) resulted in substantial hepatic metastasis. Analysis of NK cell subsets, defined by the differential expression of a combination of CD27 and CD11b, indicated a significant difference in the distribution of NK cell subsets in the lung and liver with the mature subset being dominant in the lung and the immature subset being dominant in the liver. Several experimental approaches, including adoptive transfer, clearly indicated that the immature hepatic NK cell subset, CD27+ CD11b–, was protective against liver metastasis; this subset mediated its protection by a perforin-dependent cytotoxic mechanism. In contrast, the more mature NK cell subsets were more efficient at reducing pulmonary tumor load. These data indicate that organ-specific immune responses may play a pivotal role in determining the permissiveness of a given organ for the establishment of a metastatic niche.  相似文献   

2.
We report that human peripheral NK cells expressing high CD56 levels (CD56(+high)) are terminally differentiated cells indistinguishable from mature NK cells recently activated in the presence of IL-12, and not a functionally distinct NK-cell subset or progenitors to mature CD56(+low) NK cells. CD56(+high) NK cells coexpress all differentiation Ags constitutive or inducible in mature (CD56(+)) NK cells, except CD16, present at lower level than on most mature NK cells. Also, activation markers, activating receptors and adhesion molecules, and most inducible receptors are expressed exclusively and constitutively and are inducible at higher levels on CD56(+high) than on CD56(+low) NK cells. Consistent with their activated phenotype, many CD56(+high) NK cells are cycling and mediate heightened effector functions (proliferation, IFN-gamma and IL-10 but not IL-13 production) in response to IL-12 and other NK cell-specific stimuli. Conversely, IL-12 induces on CD56(+low) NK cells all markers constitutively expressed on the CD56(+high) NK cells, concomitantly preventing the IL-2 (and IL-15)-inducible expression of NKp44 and CD16 re-expression after immune complex-induced down-modulation, and CD56(-/+low) NK cells acquire a CD56(+high) NK cell phenotype in short term in vitro culture with IL-12. The significance of these findings to the NK cell-mediated regulation of immune responses and NK cell development is discussed.  相似文献   

3.
NK cells have been proposed to be an initial source of IFN-gamma that supports either Th1 or CTL priming. Although NK cells reside in naive lymph nodes (LN) at a very low frequency, they can be recruited into LN draining sites of infection, inflammation, or immunization where they potentially influence adaptive immunity. In this study, we report that mature CD27(high) NK cells are predominantly recruited into the draining LN following dendritic cell (DC) challenge. Importantly, the recruitment of the CD27(high) NK cell subset in the draining LN was dependent on host IFN-gamma and the activation status of NK cells. Endogenous epidermal DC migration induced by hapten challenge also triggers NK cell recruitment to the draining LN in an IFN-gamma-dependent mechanism. Thus, our results identify that CD27(high) NK cells are the dominant population recruited to the draining LN and NK cell recruitment requires endogenous IFN-gamma in coordinating with DC migration.  相似文献   

4.
The inhibitory NKR-P1B receptor identifies a subset of rat splenic NK cells that is low in Ly49 receptors but enriched for CD94/NKG2 receptors. We report in this study a novel NKR-P1B(bright) NK subpopulation that is prevalent in peripheral blood, liver, and gut-associated lymphoid organs and scarce in the spleen, peripheral lymph nodes, bone marrow, and lungs. This NKR-P1B(bright) NK subset displays an activated phenotype, expressing CD25, CD93, CX(3)CR1 and near absence of CD62-L, CD11b, and CD27. Functionally, NKR-P1B(bright) NK cells are highly responsive in terms of IFN-γ production and exert potent cytolytic activity. They show little spontaneous proliferation, are reduced in numbers upon in vivo activation with polyinosinic:polycytidylic acid, and have poor survival in ex vivo cytokine cultures. Our findings suggest that NKR-P1B(bright) NK cells are fully differentiated effector cells that rapidly die upon further activation. The identification of this novel rat NK cell subset may facilitate future translational research of the role of distinct NK cell subsets under normal physiological conditions and during ongoing immune responses.  相似文献   

5.
The adaptive immune response of human CD8 T cells to invading pathogens involves the differentiation of naive cells into memory and effector cells. However, the lineage relationship between memory and effector cells and the differentiation of CD8 T cells into distinct subsets of effector cell subpopulations are subjects of considerable debate. CD7 identifies three populations of CD8 T cells: CD7 high (CD7(high)), low (CD7(low)), and negative (CD7(neg)) that translate into subsets with distinct functional properties. The CD7(high) subset contains naive and memory cells and the CD7(low) and CD7(neg) subsets contain effector cells. The effector cells can functionally be divided into cytokine-secreting effector CD8 T cells and lytic effector CD8 T cells. These data provide a model of human CD8 T cell differentiation in which specialized distinct subpopulations can be identified by expression of CD7.  相似文献   

6.
The absence of the TNF-receptor family member CD27 marks the stable acquisition of cytolytic effector functions by both CD4(+) and CD8(+) T cells. We found that the majority of circulating human NK cells was CD27(-). These cells were largely CD56(dim), contained high levels of perforin and granzyme B, and were able to exert strong cytotoxic activity. In contrast, circulating CD27(+) NK cells were mostly CD56(dim/bright), had significant lower levels of perforin and granzyme B, and had a low cytolytic potential. Primary and secondary lymphoid organs were markedly enriched for CD27(+) NK cells. When correlating the expression of CD27 to recently defined developmental stages of NK cells in tonsil, we observed that CD27 was exclusively found on mature CD94(+), stage 4 NK cells. On these cells, regulation of CD27 expression appeared to be controlled by the common gamma-chain cytokine IL-15, and down-regulation of CD27 was specifically induced by its ligand, CD70. Thus, the absence of CD27 expression allows the definition of cytotoxic effector cells within the known mature NK cell subsets in humans.  相似文献   

7.
Laroni A  Gandhi R  Beynon V  Weiner HL 《PloS one》2011,6(10):e26173
Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56(bright) and CD56(dim) NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-γ expression, increased viability and decreased proliferation in both CD56(bright) and CD56(dim) NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56(bright) NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56(bright) NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders.  相似文献   

8.
An increasing number of studies suggest that individual subsets of dendritic cells (DC) exhibit distinct capabilities with regard to the generation of the adaptive immune response. In this study, we evaluated the properties of a relatively unexplored DC subset present in the lung-draining mediastinal lymph node. This subset expresses the airway dendritic cell marker CD103 together with CD8. These DC were of interest given that our previous studies using a model of respiratory infection with vaccinia virus revealed a distinct difference in the ability of CD103(+) DC to prime T cells that correlated inversely with the expression of CD8, suggesting a differential role of these DC in the context of respiratory virus infection. To expand our understanding of the role of this DC population, we performed analyses to elucidate the phenotype, migratory capacity, responsiveness to innate stimuli, and priming capacity of CD8(+) CD103(+) DC. We found that expression of surface markers on these DC was similar to that of CD8(-) CD103(+) DC, supporting their close relationship. Further, the two DC types were similar with regard to antigen uptake. However, although both CD103(+) subsets originated from the lung, CD8-bearing CD103(+) DC appeared in the lymph node with delayed kinetics following virus infection. While this subset exhibited increased responsiveness to a number of Toll-like receptor (TLR) agonists, their response to infection was virus specific, demonstrating poor responsiveness to vaccinia virus infection but robust maturation following infection with parainfluenza virus 5 or influenza virus. These findings show that CD8 marks a population of lung airway-derived DC with distinct migratory and maturation responses that likely contribute differentially to the immune response depending on the infecting pathogen.  相似文献   

9.
The impairment of NK cell functions in the course of HIV infection contributes to a decreased resistance against HIV and other pathogens. We analyzed the proportion of mature and immature NK cell subsets, and measured subsets of IFN-gamma and TNF-alpha-producing NK and T cells in viremic or therapy-suppressed HIV-infected subjects, and noninfected control donors. Viremic HIV(+) individuals had significantly lower proportions of mature CD3(-)/CD161(+)/CD56(+) NK cells and of IFN-gamma-producing NK cells compared with noninfected donors, independent of CD4(+) T cell counts. HIV-infected subjects with undetectable viral load recovered mature CD3(-)/CD161(+)/CD56(+) NK cells and cytotoxicity against tumor (K562) and HSV-infected target cells to percentages comparable with those of uninfected individuals, but their NK cells remained impaired in their ability to produce IFN-gamma. In parallel to these ex vivo findings, in vitro NK cell differentiation of CD34-positive cord blood precursors in the presence of R5 or X4 HIV-1 resulted in the production of NK cells with a normal mature phenotype, but lacking the ability to produce IFN-gamma, whereas coculture of uninfected PBMC with HIV failed to affect mature NK cell properties or IFN-gamma secretion. Altogether, our findings support the hypothesis that mature NK cell phenotype may be uncoupled from some mature functions following highly active antiretroviral therapy-mediated suppression of HIV-1, and indicate that relevant innate immune functions of NK cell subsets may remain altered despite effective viral suppression following antiretroviral treatment.  相似文献   

10.
Human natural killer (NK) cells are one major component of lymphocytes that mediate early protection against viruses and tumor cells, and play an important role in immune regulatory functions. In this study, we demonstrated that human NK cells could be divided into four subsets, CD56hi CD16(-), CD56lo CD16(-), CD56+CD16+ and CD56(-)CD16+, based on the expression of cell surface CD56 and CD16 molecules. Phenotypic analysis of NK cell subsets indicated that the expression of activation markers, adhesion molecules, memory cell markers, inhibitory and activating receptors, and intracellular proteins (granzyme B and perforin) were heterogeneous. Following interleukin (IL)-2 stimulation, interferon-gamma was preferentially produced by CD56+CD16(-) NK cells and this subset showed more proliferative capacity. The cytolytic activity of both CD56+CD16(-) and CD56+/-CD16+ subsets could be augmented in response to IL-2. The data provided a new definition for NK cell subsets demonstrating their phenotypic and functional diversity and possible stage of NK cell differentiation in peripheral blood.  相似文献   

11.

Background

Terminal differentiation of NK cells is crucial in maintaining broad responsiveness to pathogens and discriminating normal cells from cells in distress. Although it is well established that KIRs, in conjunction with NKG2A, play a major role in the NK cell education that determines whether cells will end up competent or hyporesponsive, the events underlying the differentiation are still debated.

Methodology/Principal Findings

A combination of complementary approaches to assess the kinetics of the appearance of each subset during development allowed us to obtain new insights into these terminal stages of differentiation, characterising their gene expression profiles at a pan-genomic level, their distinct surface receptor patterns and their prototypic effector functions. The present study supports the hypothesis that CD56dim cells derive from the CD56bright subset and suggests that NK cell responsiveness is determined by persistent inhibitory signals received during their education. We report here the inverse correlation of NKG2A expression with KIR expression and explore whether this correlation bestows functional competence on NK cells. We show that CD56dimNKG2AKIR+ cells display the most differentiated phenotype associated to their unique ability to respond against HLA-E+ target cells. Importantly, after IL-12 + IL-18 stimulation, reacquisition of NKG2A strongly correlates with IFN-γ production in CD56dimNKG2A NK cells.

Conclusions/Significance

Together, these findings call for the reclassification of mature human NK cells into distinct subsets and support a new model, in which the NK cell differentiation and functional fate are based on a stepwise decrease of NKG2A and acquisition of KIRs.  相似文献   

12.
Dendritic cells (DC) are a heterogeneous population of APC endowed with specific functions. The nature of the DC subset involved in the course of an immune response to a specific pathogen might be important for inducing the appropriate effectors. In addition, each DC subset might also exhibit intrinsic functional plasticity. In the rat, spleen DC can be separated into three morphological and phenotypical distinct subsets, namely CD4+, CD4-, and plasmacytoid DC (pDC), whose frequencies are strain dependent. We correlated the expression of TLR and nucleotide-binding oligomerization domain 2 (NOD2) in these DC subsets to their in vitro responsiveness to specific ligands. CD4- DC expressed high levels of TLR1, 2, 3, and 10 mRNA, low TLR4, 5, 6, 7, and 9, and very low, if any, TLR8. pDC had a restricted repertoire characterized by high TLR7 and 9. CD4+ DC expressed all TLR and 10-fold higher levels of NOD2 mRNA than CD4- and pDC. Upon stimulation by TLR and NOD2 ligands, each DC subset responded in quite a stereotyped fashion. TLR2/6, 3, 4, 5, 9, and NOD2 triggering induced CD4- DC to mature and produce high IL-12p40, low IL-10, and TNF-alpha. TLR7/8 and 9 triggering induced pDC to mature and produce copious amounts of IL-6, IL-12p40, and TNF-alpha and low IFN-alpha. CD4+ DC were very poor producers of inflammatory cytokines. This study suggests that the nature of spleen DC responses to pathogens is dependent on subset specific-stimulation rather than intrinsic plasticity.  相似文献   

13.
The human CD45R0+ (memory) CD4+ T cell population can be subdivided into a large (82%) CD27+ and a small (18%) CD27- subset. Within the CD45R0+CD27- subset, cells accumulate that have been persistently stimulated by Ag in vivo. As an apparent consequence, TLC with a differentiated functional phenotype, producing either high levels of IFN-gamma (Th1-like), high levels of IL-4 (Th2-like) or high amounts of both these cytokines (here referred to as Thx) can primarily be generated from the CD27- memory CD4+ T cell subset. In this study we examined the requirements for induction of proliferation of distinct CD4+CD45R0+ Th subsets. Immobilized CD3 mAb induced proliferation with comparable magnitude and kinetics in all types of TLC. However, interference with intracellular signaling pathways in this activation system, resulted in a strong inhibition of proliferation in TLC derived from CD27+ cells whereas, in contrast, TLC from CD27- cells were relatively resistant to elevation of [cAMP]i, inhibition of protein kinase C activation and the immunosuppressive effects of cyclosporin A. Stimulation with CD3 mAb in soluble form resulted in Il-4 secretion by Th2-like and Thx-type TLC but did not induce IFN-gamma or Il-2 secretion in any Th subset. Interestingly, Th2-like cells but not Thx-type cells were able to use endogenously produced Il-4 for proliferation. These data demonstrate a differential sensitivity of CD45R0+CD4+ Th subsets for immune activation and suppression, which correlated with their maturation stage, as reflected by CD27 membrane expression, as well as with their effector phenotype.  相似文献   

14.
A subset of T cells in human peripheral blood expresses CD161 (NKR-P1A) receptors that are primarily associated with NK cells. In the current study we isolated blood T cell subsets according to the expression of CD161 and examined their contents of naive, central memory, and effector memory cells and their capacities for proliferation, cytokine secretion, and natural cytolysis. We found that CD4+CD161- and CD8+CD161- subsets contained predominantly naive T cells that secreted high levels of IL-2 after in vitro stimulation, and CD4+CD161int and CD8+CD161int subsets contained predominantly effector and central memory T cells that secreted high levels of IFN-gamma and TNF-alpha. All of these subsets showed vigorous proliferation after stimulation in vitro, but none had NK lytic activity. Unexpectedly, the CD8+CD161+ cells contained an anergic CD8alpha+CD8betalow/-CD161high T cell subset that failed to proliferate, secrete cytokines, or mediate NK lytic activity.  相似文献   

15.
Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c- plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c- IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c- precursors (>7-fold). Freshly sorted CD11c+ but not CD11c- cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c- cells can be induced to secrete high levels of IFN-alpha, in response to influenza virus. CD11c+ and CD11c- cells can mature in vitro with GM-CSF + TNF-alpha or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c- subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.  相似文献   

16.
Human NK cells comprise two main subsets, CD56(bright) and CD56(dim) cells, which differ in function, phenotype, and tissue localization. To further dissect the differentiation from CD56(bright) to CD56(dim) cells, we performed ex vivo and in vitro experiments demonstrating that the CD56(bright)CD16(+) cells are an intermediate stage of NK cell maturation. We observed that the maximal frequency of the CD56(bright)CD16(+) subset among NK cells, following unrelated cord blood transplantation, occurs later than this of the CD56(bright)CD16(-) subset. We next performed an extensive phenotypic and functional analysis of CD56(bright)CD16(+) cells in healthy donors, which displayed a phenotypic intermediary profile between CD56(bright)CD16(-) and CD56(dim)CD16(+) NK cells. We also demonstrated that CD56(bright)CD16(+) NK cells were fully able to kill target cells, both by Ab-dependent cell cytotoxicity (ADCC) and direct lysis, as compared with CD56(bright)CD16(-) cells. Importantly, in vitro differentiation experiments revealed that autologous T cells specifically encourage the differentiation from CD56(bright)CD16(-) to CD56(bright)CD16(+) cells. Finally, further investigations performed in elderly patients clearly showed that both CD56(bright)CD16(+) and CD56(dim)CD16(+) mature subsets were substantially increased in older individuals, whereas the CD56(bright)CD16(-) precursor subset was decreased. Altogether, these data provide evidence that the CD56(bright)CD16(+) NK cell subset is a functional intermediate between the CD56(bright) and CD56(dim) cells and is generated in the presence of autologous T CD3(+) cells.  相似文献   

17.
The NKT cell pool in the thymus contains immature (NK1.1(-)) and mature (NK1.1(+)) subsets that represent distinct linear stages of a linear developmental pathway. An unexplained paradox is why immature NK1.1(-) NKT cells are mainly exported to the periphery instead of the more mature and more abundant NK1.1(+) NKT cells. In this study we have determined that mature NK1.1(+) NKT cells are retained by the thymus to form an extremely long-lived resident population capable of rapid and prolonged production of IFN-gamma and IL-4. The retention of mature NKT cells provides an explanation for why the periphery is mainly seeded by immature NK1.1(-) cells despite mature NK1.1(+) NKT cells being more abundant in the thymus. This is the first study to identify a mature T cell subset retained within the thymus and is additional evidence of the distinct developmental pathways of mainstream T cells and NKT cells.  相似文献   

18.
NK cells are able to form a functional memory suggesting that some NK cells are surviving the activation process. We hypothesized that NK cell activation causes the development of a distinct NK cell subset and studied the fate of murine post-activation NK cells. Activation was achieved by in vivo and in vitro exposures to the melanoma tumor cell line B16 that was followed by differentiation in IL-2. When compared with control NK cells, post-activation CD25+ NK cells expressed little granzyme B or perforin and had low lysis activity. Post-activation NK cells expressed CD27, CD90, CD127, and were low for CD11b suggesting that tumor-induced activation is restricted to an early NK cell subset. Activation of NK cells led to decreases of CD16, CD11c and increases of CD62L and the IL-18 receptor. In vivo activated but not control NK cells expressed a variety of cytokines that included IFNγ, TNFα, GM-CSF and IL-10. These data suggest that the exposure of a subset of peripheral NK cells to the B16 tumor environment caused an exhaustion of their cytolytic capacity but also a gain in their ability to produce cytokines.  相似文献   

19.
Successful pregnancy in placental mammals substantially depends on the establishment of maternal immune tolerance to the semi-allogenic fetus. Disorders in this process are tightly associated with adverse pregnancy outcomes including recurrent miscarriage(RM). However, an indepth understanding of the systematic and decidual immune environment in RM remains largely lacking. In this study, we utilized single-cell RNA-sequencing(sc RNA-seq) to comparably analyze the cellular and molecular signatures of decidual and peripheral leukocytes in normal and unexplained RM pregnancies at the early stage of gestation. Integrative analysis identifies 22 distinct cell clusters in total, and a dramatic difference in leukocyte subsets and molecular properties in RM cases is revealed. Specifically, the cytotoxic properties of CD8+effector T cells, nature killer(NK), and mucosal-associated invariant T(MAIT) cells in peripheral blood indicates apparently enhanced pro-inflammatory status, and the population proportions and ligand–receptor interactions of the decidual leukocyte subsets demonstrate preferential immune activation in RM patients.The molecular features, spatial distribution, and the developmental trajectories of five decidual NK(d NK) subsets have been elaborately illustrated. In RM patients, a d NK subset that supports embryonic growth is diminished in proportion, while the ratio of another d NK subset with cyto-toxic and immune-active signature is significantly increased. Notably, a unique pro-inflammatory CD56+CD16+d NK subset substantially accumulates in RM decidua. These findings reveal a comprehensive cellular and molecular atlas of decidual and peripheral leukocytes in human early pregnancy and provide an in-depth insight into the immune pathogenesis for early pregnancy loss.  相似文献   

20.
Cancer-related deficiency in circulating dendritic cells (DC), whose important anticancer role is well established, has been proven to be associated with lymphocytopenia. This study was performed to evaluate which lymphocyte subset is most markedly related to the failure of the DC system. The study included 30 patients with gastrointestinal tract cancer, 10 of whom had distant organ metastases. Immature and mature DCs were measured by FACS and monoclonal antibodies against CD123 and CD11c antigens, respectively. Low levels of immature and mature DCs were observed in 63% and 43% of patients, respectively. Patients with low levels of circulating mature DCs had significantly lower values of T lymphocytes, T helper lymphocytes and NK cells than those with normal mature DC levels. In contrast, no significant difference was seen between patients with normal or abnormally low values of immature DCs. Conversely, patients with a decreased number of T lymphocytes, T helper lymphocytes and NK cells showed significantly lower values of circulating mature DCs than those with lymphocyte subsets within the normal range, whereas no difference was seen in immature DC amounts. This study suggests that only mature DC deficiency may be associated with important lymphocyte subset alterations in cancer patients, whereas deficiency in immature DCs does not seem to be related to other immune cell disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号