首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blattella bisignata (Brunner) and B. germanica (L.) are oviparous cockroaches with cyclic reproductive behaviour, but in B. germanica only males show circadian rhythmicity of locomotion at 28°C and DD (constant darkness). In B. bisignata, males and virgin females cockroaches entrained by light–dark cycles show free‐running rhythmicity in DD, and most activities occur during the subjective night. Daily locomotor activities of virgin females show cyclic changes that coincided with ovarian development. Virgin females also exhibit calling behaviour during the subjective night, and this shows a free‐running rhythm. Male mate‐finding locomotion and female calling behaviour are under circadian control, so the timing for both behaviours is synchronized. However, most mated females do not show a locomotor free‐running rhythm under DD conditions. Our results indicate that only mated females could not express a circadian locomotor rhythm. Pregnancy reduces a female’s locomotory intensity and masks the expression of a circadian locomotor rhythm. We attribute the differences in circadian locomotory rhythms between these two species to their living environments and mate‐finding strategies.  相似文献   

2.
In the free-running circadian locomotor activity rhythm of a 7-year-old male owl monkey (Aotus lemurinus griseimembra) kept under constant light and climatic conditions (LL 0.2 lux, 25°C ± 1°C, 60 ± 5% relative humidity [RH]), a second rhythm component developed that showed strong relative coordination with the free-running activity rhythm of 24.4h and a 24h rhythm. The simultaneously recorded feeding activity rhythm strongly resembled this rhythm component. Therefore, it seems justified to infer that there was an internal desynchronization between the two behavioral rhythms or their circadian pacemakers, that is, between the light-entrainable oscillator located in the suprachiasmatic nuclei (SCN) and a food-entrainable oscillator located outside the SCN. This internal desynchronization may have been induced and/or maintained by a zeitgeber effect of the (irregular) 24h feeding schedule on the food-entrainable oscillator. The weak relative coordination shown by the activity rhythm indicates a much weaker coupling of the light-entrainable oscillator to the food-entrainable oscillator than vice versa. (Chronobiology International, 17(2), 147-153, 2000)  相似文献   

3.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

4.
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish. Moreover, reproductive events clearly affected the behavioral rhythms of female tilapia, a mouth-brooder teleost species. Under DD, 50% (6 of 12) of male fish showed circadian rhythms with an average period (τ) of 24.1±0.2 h, whereas under the 45 min LD pulses, 58% (7 of 12) of the fish exhibited free-running activity rhythms with an average τ of 23.9±0.5 h. However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7–10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown.  相似文献   

5.
Locomotor activity of the surface-dwelling millipede Syngalobolus sp. was recorded under laboratory conditions. Infra-red diodes were used to detect the locomotor activity in an oval shaped chamber, which was connected with an event recorder. The results of 11 individuals showed that the millipedes entrained to light/dark (LD12:12 h) conditions with negative phase angle difference (-83.2 ± 24.72 min). The millipedes showed a clear-cut free-running rhythm with a period (t) of 23.8 ± 1.0 h (n = 9) in constant darkness (DD). The period in continuous light (LL) was relatively greater (25.2 ± 0.1 h; n = 3) than that in DD.  相似文献   

6.
We studied the locomotor rhythmicity in heptapterine catfishes, genus Taunayia, under free-running conditions (DD) and LD cycles (12:12). Taunayia sp., anophthalmic and depigmented undescribed species from a cave in northeastern Brazil, is the fourth Brazilian troglobitic catfish studied with focus on circadian rhythms. Weak free-running rhythmicity, with absence of significant circadian components, was observed for this species when compared to the epigean, eyed relatives. On the other hand, the studied troglobitic catfishes in general presented significant circadian rhythms under LD cycles, with activity peaks in the night phase probably corresponding to nocturnal activity pattern inherited from their epigean ancestors. However, no residual oscillations were observed after transition from LD to DD. This indicates masking of activity by light-dark cycles. Regression of circadian rhythmicity in the stable, permanently dark subterranean habitat was also observed for other cave fishes. Such regression corroborates the notion that circadian rhythmicity is mainly selected in the epigean environment by ecological factors, namely daily cycles of light and/or temperature.  相似文献   

7.
The circadian rhythms of locomotor activity of the scorpion Leiurus quinqueslriatus were examined under different light-dark cycles and in free-running conditions. The circadian rhythm is bimodal in LD 12:12 with alternating cycles of temperature (35°-25°C) with high intensity (1300 lux) or in LD 12: 12 with constant temperature 35° C with 300 lux. In LD 12:12 (1300 lux), in long or in short light spans with constant temperature, the bimodal pattern is slightly changed with the appearance of a third minor peak of activity. In free-running conditions, the bimodal rhythm of locomotor activity persists in DD with T about 24 hr, but in LL the rhythm becomes unimodal with T about 24 hr. Cosinor and power spectrum analysis showed the presence of more than one periodic component. It seems that there is a correlation between the range of light regimens, temperature, light intensity and the coincidence of these components. These components are independently entrained by the environmental light cycle. The mechanism of entrainment of components is discussed.  相似文献   

8.
We have studied the effects of ovaries, juvenile hormone (JH) and mating on locomotor activity and sexual receptivity of female German cockroaches. Our results indicate that locomotor activity and sexual receptivity are under the same control mechanisms. The ovary served as a negative masking factor for the locomotor circadian rhythm, but did not affect the frequency of locomotor activity. We conclude that JH controls the locomotor activity of females from the following evidence: (1) increasing locomotion of virgin females coincided with an increasing volume of the corpora allata; (2) allatectomy reduced female locomotion significantly; (3) after absorbing the JH analogue (fenoxycarb) through their tarsi, allatectomized females regained their high level of locomotor activity. Since the daily locomotor activity of allatectomized and ovari-allatectomized females changed cyclically with continuous (non-cyclic) contact of fenoxycarb, an unidentified factor which was independent of ovarian development is proposed to regulate cyclic locomotor activity. In addition to controlling the frequency of locomotor activity, JH was essential for the expression of the locomotor circadian rhythm because allatectomy abolished the circadian rhythm expressed in ovariectomized females. Mating significantly decreased the frequency of locomotor activity and the degree of sexual receptivity. The inhibitory effect of mating resulted from the transmission of a mating signal through the ventral nerve cord when sperm was transferred successfully. The mating experiments with allatectomized and ovariectomized females showed that JH was the major factor in regulating the expression of sexual receptivity.  相似文献   

9.
Previous studies paired diurnal Octodon degus undergoing/phase advances (phase-shifters) with those entrained to a light-dark (LD) cycle (donors). Results included opposite outcomes of male and female social cues on resynchronization following 6-h advances in females, but no effect of social cues on male resynchronization. The first experiment determined if social cues could influence resynchronization rates of circadian rhythms in male and female degus following a 6-h phase delay of the LD cycle. Female phase-shifters resynchronized temperature and activity rhythms 20-35% faster when housed with either entrained (donor) females or males compared with females housed alone. No significant differences in resynchronization rate for phase-shifting males existed between test conditions. This experiment extends the previous finding that females, but not males, respond strongly to donor cues to increase resynchronization rates in the presence of light. A second experiment determined that accelerated resynchronization rates of female phase-shifters housed with female donors were due to social cues directly affecting the circadian system rather than the result of social masking. On the day following resynchronization with or without a female donor present, phaseshifters were transferred individually to constant conditions (DD). The temperature and activity rhythms of female phase-shifters free-ran from the point at which resynchronization occurred for both the control and experimental females. Thus, social cues accelerate true reentrainment, not masking, of the circadian system in the presence of a LD cycle in female degus. Donor cues from females enhance reentrainment after advances and delays, but the effect of male donor cues is dependent on the direction of the phase shift.  相似文献   

10.
Six female mice were studied separately for six weeks, first in constant light (300 lx), and then on a 12 : 12 L : D schedule (light on 07:00-19:00-h). Food and water were available ad libitum. Abdominal temperature and spontaneous locomotor activity were measured every 10 min. In constant light, the animals free-ran with both temperature and activity records showing circadian rhythms that were significantly greater than 24 h; by contrast, in the LD schedule, the circadian rhythms had become entrained and showed a stable phase relation to this schedule. The direct masking effects upon raw temperatures caused by bursts of activity were clearly seen, and could be removed by a process of 'purification'. A comparison of the activity profiles during the entrained and free-running phases showed that the imposed light-dark cycle resulted in decreased activity in the light, increased activity in the dark, and bursts of activity at the light-dark and dark-light transitions. Masking effects due to the activity profile were present in the raw temperature profile, and many could be removed by purification using the activity profile; however, there was evidence that other masking effects, independent of activity, were present also. The efficacy of thermoregulatory compensation, as assessed from the rise of core temperature produced by spontaneous locomotor activity, was, in comparison with the free-running condition, increased in the dark phase and decreased in the light phase; this would appear to be one way to limit the temperature rise that occurs in the active phase of the rest-activity cycle.  相似文献   

11.
The rhythms of locomotor activity of male and virgin or mated female flies were compared in the Drosophila melanogaster wild-type strains CantonS, Berlin, and OregonR. Under light-dark conditions, most flies showed a bimodal activity pattern with a morning peak around lights-on and an evening peak before lights-off. For all strains, a distinct sexual dimorphism was observed in the phase of the morning peak. Males had a significantly earlier morning peak than females and consequently a larger phase angle between morning and evening peak (psi(m, e)). Under constant dark conditions, the morning component merged with the evening component to a unimodal activity band in about half of the flies. In those flies who maintained bimodality, the sex-specific difference in psi(m, e) disappeared. Other sex-specific differences were now apparent: Males showed a shorter free-running period than females, and in two of the three strains, females were more active than males. Morning and evening components seem to contribute to the free-running period. Spontaneous or externally provoked change in psi(m, e) were correlated with period changes. In some flies, the morning and the evening components showed splitting, indicating that they are the output of two different oscillators. The sexual dimorphism in the phase of the morning peak under LD-conditions suggests that the function of activity during morning and evening peak might be different, for example, during the morning peak, males are active to find females. Overall, the results underline the multioscillatory nature of Drosophila's circadian system.  相似文献   

12.
为查明雌雄罗氏沼虾应对低氧胁迫的行为生理响应,设置6.46(对照)、4.48和3.27 mg·L-13种溶解氧水平,研究了雌、雄个体在胁迫6 d后肝胰脏和肌肉能量代谢酶活性及游泳和弹跳速度。结果表明: 溶解氧从6.46 mg·L-1降至4.48 mg·L-1,雌雄个体肌肉有氧代谢酶活性及游泳速度均显著下降,且雄性下降幅度小于雌性,厌氧代谢酶活性并无显著变化;溶解氧继续降至3.27 mg·L-1,雌雄个体肌肉有氧代谢酶和厌氧代谢酶活性均显著下降,肝胰脏厌氧代谢酶中的乳酸脱氢酶(LDH)活性及弹跳速度显著下降,且雌性肝胰脏LDH活性下降幅度小于雄性。雌雄罗氏沼虾游泳速度与游泳足肌肉有氧代谢酶活性呈显著正相关,弹跳速度则与腹部肌肉厌氧代谢酶活性呈显著正相关。表明罗氏沼虾可以通过降低能量代谢水平应对低氧胁迫,但这种生理调节会导致运动能力下降,雄性优先将能量分配于肌肉以满足运动,雌性则优先保障肝胰脏能量供应。  相似文献   

13.
Many behaviors and physiological processes including locomotor activity, feeding, sleep, mating, and migration are dependent on daily or seasonally reoccurring, external stimuli. In D. melanogaster, one of the best-studied circadian behaviors is locomotion. The fruit fly is considered a diurnal (day active/night inactive) insect, based on locomotor-activity recordings of single, socially naive flies. We developed a new circadian paradigm that can simultaneously monitor two flies in simple social contexts. We find that heterosexual couples exhibit a drastically different locomotor-activity pattern than individual males, females, or homosexual couples. Specifically, male-female couples exhibit a brief rest phase around dusk but are highly active throughout the night and early morning. This distinct locomotor-activity rhythm is dependent on the clock genes and synchronized with close-proximity encounters, which reflect courtship, between the male and female. The close-proximity rhythm is dependent on the male and not the female and requires circadian oscillators in the brain and the antenna. Taken together, our data show that constant exposure to stimuli emanating from the female and received by the male olfactory and other sensory systems is responsible for the significant shift in intrinsic locomotor output of socially interacting flies.  相似文献   

14.
Previous studies on the locomotor activity of troglobitic (exclusively subterranean) species have shown that circadian rhythmicity may be reduced in populations evolving in the absence of zeitgebers such as daily cycles of light and temperature; therefore, circadian activity rhythms, although not infradian nor ultradian rhythms, seem to have been selected by external, ecological factors. We studied the locomotor activity of a highly specialized Heptapteridae catfish (undescribed genus and species) from Chapada Diamantina, NE Brazil, compared to another specialized Brazilian troglobitic heptapterid, Taunayia sp. Locomotor activity was continuously measured in the laboratory with an infra-red photocell system. Seven specimens of the new genus were tested, each one during 14 consecutive days according to the following schedule: three days in DD → seven days in LD (12:12 h) → four days in DD. Data were submitted both to fast Fourier transform periodogram followed by Siegel's test of significance and Lombs - Scargle periodogram techniques in order to identify spectral composition of the time series. In general, results were similar to those obtained for Taunayia sp.: (a) for most specimens, absence of significant circadian components in locomotor activity under DD; (b) for all specimens, significant circadian components under LD, with higher levels of activity during the dark phase, as expected for species belonging to nocturnal epigean taxa; (c) for most specimens, no residual oscillations recorded when free-running conditions were reinstalled. Circadian locomotor activity detected under LD may thus be interpreted as a direct, masking effect of the LD cycle. This suggests a pattern for highly specialized troglobitic species, isolated for a long time in the subterranean habitat, with a progressive reduction of circadian time-keeping mechanisms. Our studies also demonstrate the potential of subterranean organisms for investigation of the origin, evolution, functioning and genetics of circadian rhthmicity.  相似文献   

15.
The effect of 'novel running wheels' on circadian clocks of the nocturnal field mouse Mus booduga was investigated during free-running and entrained conditions. In order to find out whether daily access to novel running wheels can entrain the locomotor activity rhythms experimental animals (n = 6) were provided with 'novel running wheels' at a fixed time of the day. The control animals (n = 5) were handled similar to the experimental animals but were not given access to novel running wheels. The results show that daily access to novel running wheels entrained the free-running locomotor activity rhythm of these mice. The post-entrainment free-running period (τ) of the experimental animals was significantly shorter than the pre-entrainment τ, whereas the pre- and post-treatment τ of the control animals did not differ significantly. In separate set of experiments, the effect of access to novel running wheels on the rate of re-entrainment was studied after a 6 h phase advance/delay in 24 h (12:12 h) light/dark (LD) cycles. Experimental animals were given access to novel running wheels for 3-h, 1 h after the 'lights-off' only on the first day of the 'new LD cycles'. Experimental animals took fewer cycles to re-entrain to 6-h phase advanced LD cycles compared to the control animals. After a phase delay in the LD cycles by 6h, the experimental animals took more number of cycles to re-entrain compared to the control animals. These results thus suggest that access to novel running wheel can act as a Zeitgeber for the circadian clocks of the nocturnal mouse M. booduga, and can also modify the rates of re-entrainment to phase shifted LD cycles, in a time-dependent manner.  相似文献   

16.
We studied the locomotor rhythmicity in heptapterine catfishes, genus Taunayia, under free-running conditions (DD) and LD cycles (12:12). Taunayia sp., anophthalmic and depigmented undescribed species from a cave in northeastern Brazil, is the fourth Brazilian troglobitic catfish studied with focus on circadian rhythms. Weak free-running rhythmicity, with absence of significant circadian components, was observed for this species when compared to the epigean, eyed relatives. On the other hand, the studied troglobitic catfishes in general presented significant circadian rhythms under LD cycles, with activity peaks in the night phase probably corresponding to nocturnal activity pattern inherited from their epigean ancestors. However, no residual oscillations were observed after transition from LD to DD. This indicates masking of activity by light-dark cycles. Regression of circadian rhythmicity in the stable, permanently dark subterranean habitat was also observed for other cave fishes. Such regression corroborates the notion that circadian rhythmicity is mainly selected in the epigean environment by ecological factors, namely daily cycles of light and/or temperature.  相似文献   

17.
Lycosa tarentula is a ground-living spider that inhabits a burrow where it awaits the appearance of prey or conspecifics. In this study, circadian rhythms of locomotor activity were examined as well as the ocular pathway of entrainment. Thirty-three adult virgin females were examined under constant darkness (DD); all of them exhibited robust circadian rhythms of locomotor activity with a period averaging 24.1h. Fourteen of these spiders were studied afterwards under an LD 12:12 cycle; they usually entrained to in the first or second day, even when the light intensity was as low as 1 lx. During the LD cycle, locomotor activity was generally restrained to the darkness phase, although several animals showed a small amount of diurnal activity. Ten males were also examined under LD; they were also nocturnal, but were much more active than the females. Seven females were examined under constant light (LL); under this they became arrhythmic. Except for the anterior median eyes (OMAs), all the eyes were capable of entraining the locomotor activity to an LD cycle. These results demonstrate that under laboratory conditions and low light intensities locomotor activity of Lycosa tarentula is circadian and in accordance with Aschoff's 'rule'. Only OMAs are unable to entrain the rhythm; the possible localization of circadian clock is therefore discussed.  相似文献   

18.
When organisms are maintained under constant conditions of light and temperature, their endogenous circadian rhythms free run, manifesting their intrinsic period. The phases of these free-running rhythms can be shifted by stimuli of light, temperature, and drugs. The change from one free-running steady state to another following a perturbation often involves several transient cycles (cycles of free-running rhythm drifting slowly to catch up with the postperturbation steady state). Although the investigation of oscillator kinetics in circadian rhythms of both insects and mammals has revealed that the circadian pacemaker phase shifts instantaneously, the phenomenon of transient cycles has remained an enigma. We probed the phases of the transient cycles in the locomotor activity rhythm of the field mouse Mus booduga, evoked by a single light pulse (LP), using LPs at critically timed phases. The results of our experiments indicate that the transient cycles generated during transition from one steady state to another steady state do not represent the state of the circadian pacemaker (basic oscillator) controlling the locomotor activity rhythm in Mus booduga. (Chronobiology International, 17(2), 129-136, 2000)  相似文献   

19.
Circadian rhythms of demand-feeding and locomotor activity in rainbow trout   总被引:2,自引:0,他引:2  
Under free-running conditions, most rainbow trout displayed circadian feeding rhythms, although the expression of circadian rhythmicity depended on the experimental condition: 16·7% of fish under constant dim light (LL dim), 66·1% under a 45 :45 min light-dark cycle (LD pulses), and 83·8% under constant light (LL). Under LD pulses, the period length of the free-running rhythms for feeding was significantly shorter (21·9 ± 0·7 h, n =8) than under LL (26·2 ± 0·3 h, n =10). Period length for locomotor activity under LL was 25·8 ± 0·6 h ( n =4). Under LD conditions, the daily demand-feeding profile was always confined to the light phase and chiefly composed of two main episodes, directly after lights on (light elicited) and in anticipation to lights off (endogenous). Contrasting to feeding, the diel locomotor activity profile varied remarkably: a diurnal activity pattern at the bottom, while a clearly nocturnal pattern at the surface. These results contribute to a better understanding of feeding and locomotor rhythms of rainbow trout, providing evidence for the existence of a biological clock involved in their circadian control. This finding contrasts with the previously recorded lack of an endogenous oscillator in the pineal organ driving the rhythmic secretion of melatonin, which suggests different locations from the pineal for the circadian pacemakers in this species.  相似文献   

20.
Previous studies paired diurnal Octodon degus undergoing/phase advances (phase-shifters) with those entrained to a light-dark (LD) cycle (donors). Results included opposite outcomes of male and female social cues on resynchronization following 6-h advances in females, but no effect of social cues on male resynchronization. The first experiment determined if social cues could influence resynchronization rates of circadian rhythms in male and female degus following a 6-h phase delay of the LD cycle. Female phase-shifters resynchronized temperature and activity rhythms 20–35% faster when housed with either entrained (donor) females or males compared with females housed alone. No significant differences in resynchronization rate for phase-shifting males existed between test conditions. This experiment extends the previous finding that females, but not males, respond strongly to donor cues to increase resynchronization rates in the presence of light. A second experiment determined that accelerated resynchronization rates of female phase-shifters housed with female donors were due to social cues directly affecting the circadian system rather than the result of social masking. On the day following resynchronization with or without a female donor present, phaseshifters were transferred individually to constant conditions (DD). The temperature and activity rhythms of female phase-shifters free-ran from the point at which resynchronization occurred for both the control and experimental females. Thus, social cues accelerate true reentrainment, not masking, of the circadian system in the presence of a LD cycle in female degus. Donor cues from females enhance reentrainment after advances and delays, but the effect of male donor cues is dependent on the direction of the phase shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号