首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete genome of the apicomplexan parasite Cryptosporidium parvum reveals many new insights into apicomplexan biology and evolution, as well as the general process of genome reduction in parasites. The genome is globally compacted, but gene loss seems to be focused, in particular in relation to organelles. Massive losses of mitochondrial genes have taken place and there is no evidence of any plastid-related genes, providing a useful tool for examining putative plastid proteins in Plasmodium and other apicomplexans.  相似文献   

2.
The observation that Plasmodium falciparum possesses cyanide insensitive respiration that can be inhibited by salicylhydroxamic acid (SHAM) and propyl gallate is consistent with the presence of an alternative oxidase (AOX). However, the completion and annotation of the P. falciparum genome project did not identify any protein with convincing similarity to the previously described AOXs from plants, fungi or protozoa. We undertook a survey of the available apicomplexan genome projects in an attempt to address this anomaly. Putative AOX sequences were identified and sequenced from both type 1 and 2 strains of Cryptosporidium parvum. The gene encodes a polypeptide of 336 amino acids and has a predicted N-terminal transit sequence similar to that found in proteins targeted to the mitochondria of other species. The potential of AOX as a target for new anti-microbial agents for C. parvum is evident by the ability of SHAM and 8-hydroxyquinoline to inhibit in vitro growth of C. parvum. In spite of the lack of a good candidate for AOX in either the P. falciparum or Toxoplasma gondii genome projects, SHAM and 8-hydroxyquinoline were found to inhibit the growth of these parasites. Phylogenetic analysis suggests that AOX and the related protein immutans are derived from gene transfers from the mitochondrial endosymbiont and the chloroplast endosymbiont, respectively. These data are consistent with the functional localisation studies conducted thus far, which demonstrate mitochondrial localisation for some AOX and chloroplastidic localization for immutans. The presence of a mitochondrial compartment is further supported by the prediction of a mitochondrial targeting sequence at the N-terminus of the protein and MitoTracker staining of a subcellular compartment in trophozoite and meront stages. These results give insight into the evolution of AOX and demonstrate the potential of targeting the alternative pathway of respiration in apicomplexans.  相似文献   

3.
4.
Cryptosporidium parvum is a parasitic protozoan that causes the diarrheal disease cryptosporidiosis, for which no satisfactory chemotherapy is currently available. Although the presence of mitochondria in this parasite has been suggested, its respiratory system is poorly understood due to difficulties in performing biochemical analyses. In order to better understand the respiratory chain of C. parvum, we surveyed its genomic DNA database in GenBank and identified a partial sequence encoding cyanide-insensitive alternative oxidase (AOX). Based on this sequence, we cloned C. parvum AOX (CpAOX) cDNA from the phylum apicomplexa for the first time. The deduced amino acid sequence (335 a.a.) of CpAOX contains diiron coordination motifs (-E-, -EXXH-) that are conserved among AOXs. Phylogenetic analysis suggested that CpAOX is a mitochondrial-type AOX, possibly derived from mitochondrial endosymbiont gene transfer. The recombinant enzyme expressed in Escherichia coli showed quinol oxidase activity. This activity was insensitive to cyanide and highly sensitive to ascofuranone, a specific inhibitor of trypanosome AOX.  相似文献   

5.
Cai X  Herschap D  Zhu G 《Eukaryotic cell》2005,4(7):1211-1220
Recently, two types of fatty acid synthases (FASs) have been discovered from apicomplexan parasites. Although significant progress has been made in characterizing these apicomplexan FASs, virtually nothing was previously known about the activation and regulation of these enzymes. In this study, we report the discovery and characterization of two distinct types of phosphopantetheinyl transferase (PPTase) that are responsible for synthesizing holo-acyl carrier protein (ACP) from three apicomplexan parasites: surfactin production element (SFP) type in Cryptosporidium parvum (CpSFP-PPT), holo-ACP synthase (ACPS)-type in Plasmodium falciparum (PfACPS-PPT), and both SFP and ACPS types in Toxoplasma gondii (TgSFP-PPT and TgACPS-PPT). CpSFP-PPT and TgSFP-PPT are monofunctional, cytosolic, and phylogenetically related to animal PPTases. However, PfACPS-PPT and TgACPS-PPT are bifunctional (fused with a metal-dependent hydrolase), likely targeted to the apicoplast, and more closely related to proteobacterial PPTases. The function of apicomplexan PPTases has been confirmed by detailed functional analysis using recombinant CpSFP-PPT expressed from an artificially synthesized gene with codon usage optimized for Escherichia coli. The recombinant CpSFP-PPT was able to activate the ACP domains from the C. parvum type I FAS in vitro using either CoA or acetyl-CoA as a substrate, or in vivo when coexpressed in bacteria, with kinetic characteristics typical of PPTases. These observations suggest that the two types of fatty acid synthases in the Apicomplexa are activated and regulated by two evolutionarily distinct PPTases.  相似文献   

6.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

7.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

8.
Genetic recombination in sexual crosses of phycomyces   总被引:2,自引:1,他引:2       下载免费PDF全文
Sexual crosses between strains of Phycomyces blakesleeanus , involving three auxotrophic and one color marker and yielding a high proportion of zygospore germination, are described. Samples of 20–40 germ spores from 311 individual fertile germ sporangia originating from five two-factor and three three-factor crosses were characterized. The results show: (1) absence of any contribution of apogamic nuclei to the progeny, (2) confirmation of Burgeff's conjecture that the germ spores of any germ sporangium in most cases derive from one meiosis. In a cross involving two allelic markers the analysis of 175 pooled germ sporangia suggests an intragenic recombination frequency of 0.6%. All other factor combinations tested are unlinked. The bulk of the germ spores are homokaryotic. However, a small portion (4%) are heterokaryotic with respect to mating type.  相似文献   

9.
We have successfully expressed recombinant mitochondrial‐type ferredoxin (mtFd) and ferredoxin:NADP+ reductase (mtFNR) from Cryptosporidium parvum and characterized their biochemical features for the first time for an apicomplexan. Both C. parvum mtFd (CpmtFd) and FNR (CpmtFNR) were obtained and purified as holo‐proteins, in which the correct assembly of [2Fe–2S] cluster in Fd and that of FAD in FNR were confirmed and characterized by UV/vis and electron paramagnetic resonance. These proteins were fully functional and CpmtFNR was capable of transferring electrons from NADPH to CpmtFd in a cytochrome c‐coupled assay that followed a typical Michaelis‐Menten kinetics. Apicomplexan mtFd and mtFNR proteins were evolutionarily divergent from their counterparts in humans and animals and could be explored as potential drug targets in Cryptosporidium and other apicomplexans.  相似文献   

10.
11.
Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed 'immune mapped protein-1' (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult.  相似文献   

12.
13.
14.
15.

Background

Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis–associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome.

Results

Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45–767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5′ and 3′ ends of chromosome 6 and the gp60 region, largely the result of genetic recombination.

Conclusions

The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to host expansion in C. parvum.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1517-1) contains supplementary material, which is available to authorized users.  相似文献   

16.
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.  相似文献   

17.
18.
H Su  X Liu  W Yan  T Shi  X Zhao  DP Blake  FM Tomley  X Suo 《PloS one》2012,7(6):e40075
piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI) method, E. tenella sporozoites were electroporated with a donor plasmid containing the enhanced yellow fluorescent protein (EYFP) gene flanked by piggyBac inverted terminal repeats (ITRs), an Asc I-linearized helper plasmid containing the transposase gene and the restriction enzyme Asc I. Subsequently, electroporated sporozoites were inoculated into chickens via the cloacal route and transfected progeny oocysts expressing EYFP were sorted by flow cytometry. A transgenic E. tenella population was selected by successive in vivo passage. Southern-blotting analysis showed that exogenous DNA containing the EYFP gene was integrated into the parasite genome at a limited number of integration sites and that the inserted part of the donor plasmid was the fragment located between the 5' and 3' ITRs as indicated by primer-specific PCR screening. Genome walking revealed that the insertion sites were TTAA-specific, which is consistent with the transposition characteristics of piggyBac.  相似文献   

19.
Purine salvage pathways in the apicomplexan parasite Toxoplasma gondii   总被引:7,自引:0,他引:7  
We have exploited a variety of molecular genetic, biochemical, and genomic techniques to investigate the roles of purine salvage enzymes in the protozoan parasite Toxoplasma gondii. The ability to generate defined genetic knockouts and target transgenes to specific loci demonstrates that T. gondii uses two (and only two) pathways for purine salvage, defined by the enzymes hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK). Both HXGPRT and AK are single-copy genes, and either one can be deleted, indicating that either one of these pathways is sufficient to meet parasite purine requirements. Fitness defects suggest both pathways are important for the parasite, however, and that the salvage of adenosine is more important than salvage of hypoxanthine and other purine nucleobases. HXGPRT and AK cannot be deleted simultaneously unless one of these enzymes is provided in trans, indicating that alternative routes of functionally significant purine salvage are lacking. Despite previous reports to the contrary, we found no evidence of adenine phosphoribosyltransferase (APRT) activity when parasites were propagated in APRT-deficient host cells, and no APRT ortholog is evident in the T. gondii genome. Expression of Leishmania donovani APRT in transgenic T. gondii parasites yielded low levels of activity but did not permit genetic deletion of both HXGPRT and AK. A detailed comparative genomic study of the purine salvage pathway in various apicomplexan species highlights important differences among these parasites.  相似文献   

20.
Cryptosporidium parvum is an important zoonotic parasite that causes significant economic loss in the animal husbandry industry,especially the cattle industry.As there is no specific vaccine or drug against Cryptosporidium,a rapid and accurate method for the detection of C.parvum is of great significance.In this study,colloidal gold strips were developed based on Cryptosporidium parvum virus 1 (CSpV1) for the detection of C.parvum infection in cattle fecal samples.The colloidal gold solution was prepared by reducing trisodium citrate and the CSpV1 #5 monoclonal antibody was labeled with colloidal gold.A polyclonal antibody against the CSpV1 capsid protein and an anti-mouse IgG antibody were coated on the colloidal gold strips for use in the test and control lines,respectively.Our results showed that the detection sensitivity in fecal samples was up to a 1:64 dilution.There was no cross-reaction with Cryptosporidium andersoni or Giardia in the fecal samples.The different preservation conditions (room temperature,4℃,and 37℃) and preservation time (7,30,60,and 90 days) were analyzed.The data showed that the strips could be preserved for 90 days at 4℃ and for 60 days at room temperature or 37℃.The colloidal gold strips were used to detect the samples of 120 clinical fecal in Changchun,China.The results indicated that the rate of a positive test was 5%(6/120).This study provides a rapid and accurate method for detecting C.parvum infection in cattle and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号