首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We identified a new role of phytochrome in mediating germination responses to seasonal cues and thereby identified for the first time a gene involved in maternal environmental effects on germination. We examined the germination responses of a mutant, hy2-1, which is deficient in the phytochrome chromophore. The background genotype, Landsberg erecta (Ler), lacked dormancy in most treatments, while hy2-1 required cold stratification for germination in a manner that resembled a more dormant ecotype, Columbia (Col). Unlike Col, hy2-1 was not induced into dormancy by warm stratification. Therefore, the down-regulation of phytochrome-mediated germination pathways results in sensitivity to cold, but we found no evidence that reduced phytochrome activity enables the warm-induction of dormancy. Cool temperatures during seed maturation induced dormancy. The hy2-1 mutants did not overcome this dormancy, indicating that phytochrome-mediated pathways are required to break cold-induced dormancy. Ler did not respond to post-stratification temperature, but hy2-1 did respond, suggesting phytochrome pathways are involved in germination responses to temperature. In summary, phytochromes mediate dormancy and germination responses to seasonal cues experienced both during seed maturation and after dispersal. Phytochromes therefore appear to be involved in mediating seasonal germination timing, a trait of great ecological importance and one that is under strong natural selection.  相似文献   

2.
Light plays an important role in two separate processes within the seeds of Lolium rigidum (annual ryegrass). Dormant seeds of L. rigidum remain dormant when imbibed in the light, but once seeds have lost dormancy through dark-stratification, light stimulates their germination. This study characterizes the light qualities and quantities which are effective in maintenance of dormancy. Dormant seeds were stratified under narrow- and broad-waveband light to identify the potential photoreceptors involved in dormancy maintenance, and to determine whether dark-induced dormancy loss is reversible by light. Blue and green light both mediated dormancy maintenance in a far-red-independent manner. Red light resulted in dormancy maintenance only when far-red wavelengths were excluded, suggesting a redundant function of phytochrome. At low fluence rates, white light was more effective than monochromatic light, suggesting the action of multiple photoreceptors in dormancy maintenance. By contrast, nondormant seeds did not germinate unless provided with red light. These results indicate that seed dormancy maintenance is potentially mediated through the actions of blue and green light photoreceptors. Seed dormancy could thus be added to the growing list of plant responses that may be mediated by green light in a cryptochrome-independent manner.  相似文献   

3.
Promotion of germination by red light fails after prolonged dark imbibition of Rumex crispus L. seeds, indicative of a secondary dormancy. The degree and rate of inception of the dormancy increases with increasing temperature. Following establishment of the dormancy, germination response to red light can be restored by either prolonged cold treatment or brief high temperature shifts. Loss of phytochrome was not a factor in the initial establishment of the dormancy. When the seeds are in secondary dormancy, the chromophore of phytochrome can be transformed to the far red-absorbing form, but the far red-absorbing form cannot induce germination. The responses to changes in temperature suggested dependence of germination on order disorder transitions in components of the seeds.  相似文献   

4.
Imbibition conditions and seed dormancy of Arabidopsis thaliana   总被引:2,自引:0,他引:2  
The optimal combinations of temperature in the range of 0 to 20°C and duration (1 to 14 days) of imbibition for the induction of germination of Arabidopsis thaliana (L) Heynh., ecotype "Landsberg-erecta", by red light were investigated. At 2°C, 10 days of imbibition are needed tor loss of dormancy, whereas at higher temperatures, e.g 15°C, it is already lost after 1 or 2 days. It is proposed that the development of light-inducible germination is governed by two temperature-dependent processes-the loss of primary or innate dormancy and the simultaneous induction of secondary dormancy. Data are discussed in terms of the availability of phytochrome, the availability of an unknown factor X and changes in sensitivity of the process of germination induction by the far-red absorbing form of phytochrome (Pfr).  相似文献   

5.
Over the past decades many studies have aimed at elucidating the regulation of seed dormancy and germination. Many hypotheses have been proposed and rejected but the regulatory principle behind changes in dormancy and induction of germination is still a black box. The majority of proposed mechanisms have a role for certain plant hormones in common. Abscisic acid and the gibberellins are the hormones most frequently suggested to control these processes. The development of hormone-deficient mutants made it possible to provide direct evidence for the involvement of hormones in germination and dormancy related processes.In the present paper an attempt is made to assess the role of abscisic acid and gibberellins in the transitions between dormant and non-dormant states and germination. First a conceptual framework is presented in which the different states of dormancy and germination are defined in order to contribute to a solution of the semantic confusion about these terms that has existed since the beginning of seed physiology.It is concluded that abscisic acid plays a pivotal role during the development of primary dormancy and gibberellins are involved in the induction of germination. Changes in sensitivity to these hormones occur during changes in dormancy. Both synthesis of and responsiveness to the hormones are controlled by natural environmental factors such as light, temperature and nitrate.  相似文献   

6.
脱落酸调控种子休眠和萌发的分子机制   总被引:4,自引:0,他引:4  
脱落酸(ABA)是调控种子休眠和萌发过程的主要植物激素。种子内源ABA含量和种胚对ABA敏感性共同调控种子休眠和萌发过程, 确保植物种子以休眠状态在逆境中保持其自身繁衍能力, 并在适宜的环境下启动萌发程序。种子ABA合成代谢和ABA信号转导途径涉及许多重要基因家族, 它们通过复杂的调控网络精确地控制着种胚发生、种子成熟、休眠及萌发进程。该文对ABA调控种子休眠和萌发的分子机制最新研究进展进行综述, 并展望了今后的研究方向。  相似文献   

7.
Molecular mechanisms of seed dormancy   总被引:5,自引:0,他引:5  
Seed dormancy is an important component of plant fitness that causes a delay of germination until the arrival of a favourable growth season. Dormancy is a complex trait that is determined by genetic factors with a substantial environmental influence. Several of the tissues comprising a seed contribute to its final dormancy level. The roles of the plant hormones abscisic acid and gibberellin in the regulation of dormancy and germination have long been recognized. The last decade saw the identification of several additional factors that influence dormancy including dormancy-specific genes, chromatin factors and non-enzymatic processes. This review gives an overview of our present understanding of the mechanisms that control seed dormancy at the molecular level, with an emphasis on new insights. The various regulators that are involved in the induction and release of dormancy, the influence of environmental factors and the conservation of seed dormancy mechanisms between plant species are discussed. Finally, expected future directions in seed dormancy research are considered.  相似文献   

8.
Factors controlling the establishment and removal of secondary dormancy in Chenopodium bonus-henricus L. seeds were investigated. Unchilled seeds required light for germination. A moist-chilling treatment at 4 C for 28 to 30 days removed this primary dormancy. Chilled seeds now germinated in the dark. When chilled seeds were held in the dark in −8.6 bars polyethylene glycol 6000 solution at 15 C or in water at 29 C a secondary dormancy was induced which increased progressively with time as determined by subsequent germination. These seeds now failed to germinate under the condition (darkness) which previously allowed their germination. Continuous light or daily brief red light irradiations during prolonged imbibition in polyethylene glycol solution at 15 C or in water at 29 C prevented the establishment of the secondary dormancy and caused an advancement of subsequent germination. Far red irradiations immediately following red irradiation reestablished the secondary dormancy indicating phytochrome participation in “pregerminative” processes. The growth regulator combination, kinetin + ethephon + gibberellin A4+A7 (GA4+7), and to a relatively lesser extent GA4+7, was effective in preventing the establishment of the secondary dormancy and in advancing the germination or emergence time. Following the establishment of the secondary dormancy by osmotic or high temperature treatments the regulator combination was relatively more active than light or GA4+7 in removing the dormancy. Prolonged dark treatment at 29 C seemed to induce changes that were partially independent of light or GA4+7 control. The data presented here indicate that changes during germination preventing dark treatment determine whether the seed will germinate, show an advancement effect, or will become secondarily dormant. These changes appear to be modulated by light and hormones.  相似文献   

9.
Germination of Arabidopsis seeds is light dependent and under phytochrome control. Previously, phytochromes A and B and at least one additional, unspecified phytochrome were shown to be involved in this process. Here, we used a set of photoreceptor mutants to test whether phytochrome D and/or phytochrome E can control germination of Arabidopsis. The results show that only phytochromes B and E, but not phytochrome D, participate directly in red/far-red light (FR)-reversible germination. Unlike phytochromes B and D, phytochrome E did not inhibit phytochrome A-mediated germination. Surprisingly, phytochrome E was required for germination of Arabidopsis seeds in continuous FR. However, inhibition of hypocotyl elongation by FR, induction of cotyledon unfolding, and induction of agravitropic growth were not affected by loss of phytochrome E. Therefore, phytochrome E is not required per se for phytochrome A-mediated very low fluence responses and the high irradiance response. Immunoblotting revealed that the need of phytochrome E for germination in FR was not caused by altered phytochrome A levels. These results uncover a novel role of phytochrome E in plant development and demonstrate the considerable functional diversification of the closely related phytochromes B, D, and E.  相似文献   

10.
Phytochrome and cytokinin responses   总被引:11,自引:0,他引:11  
Cytokinins (CKs) and light can elicit similar morphogenic and biochemical responses in a wide range of plant species. Contradictory reports have been presented that CKs and phytochrome may have independent or identical mechanisms of action in photomorphogenic processes. These reports, relating to seed dormancy and germination, seedling development and growth efficiency, pigment production, and the photoperiodic control of flowering are reviewed. Based on historical data and recent genetic approaches using Arabidopsis mutants, the possible role of CKs in physiological and biochemical pathways affected by light are discussed briefly. Together with the phytochrome system, CKs may contribute towards entrainment of circadian rhythms and thus participate in photoperiodic signalling. Both light and CKs apparently also participate in nutrient assessment pathways. Current models propose that light and CKs might act independently or sequentially through common signal transduction intermediates to control the same downstream responses. We presently have a poor understanding of the mechanism(s) whereby these signals are integrated at the molecular level and the physiological significance of the apparent overlap between the actions of phytochrome and CK cannot yet be fully appreciated.  相似文献   

11.
Kinetin was able to break the dormancy of the “upper seed” (in bur) of Xanthium by antagonizing the endogenous inhibitor present in the embryo. Other growth substances like indoleacetic acid, gibberellic acid and cycocel were without effect. Breaking of dormancy by kinetin was dependent on reversible phytochrome system and DNA-dependent RNA synthesis. Protein synthesis is possibly not involved in the act of dormancy breaking. Endogenous inhibitor possibly participates in the mechanism of repression of genie site(s). It is suggested that an interplay of endogenous inhibitors, kinins and other factors (light, temperature, etc.) regulate dormancy, germination and differentiation by repression and derepression of DNA sites.  相似文献   

12.
王伟青  程红焱 《植物学报》2006,23(6):625-633
种子的休眠和萌发是一个复杂的过程, 至今尚未能清楚阐明其调控机制。目前已从拟南芥突变体中鉴定了一些与种子萌发和休眠相关的基因, 有助于阐明种子休眠和萌发的分子机制。本文综述了拟南芥突变体种子休眠与萌发方面的研究进展。赤霉素是促进种子萌发的主要因素之一, RGL、SPY、GCR、SLY和GAR等基因的表达参与赤霉素对种子萌发的调控。脱落酸与种子休眠有关, ABI1、ABI2、ABI3、ABI4、ABI5、FUS3、LEC、MARD和CIPK等基因参与了脱落酸的调控过程。对3类乙烯反应的突变体 (ein、etr和ctr) 以及油菜素内酯突变体 (det和bri) 的研究表明乙烯和油菜素内酯是通过拮抗脱落酸而促进种子萌发的。光对种子萌发的调节, 是通过具有Ser/Thr蛋白激酶活性的光敏色素PhyA、PhyB、 PhyC、PhyD和PhyE, 以磷酸化/去磷酸化方式调节其它与萌发相关基因的表达。含氮化合物对种子萌发的促进, 可能是以一种依赖一氧化氮的方式解除种子休眠。  相似文献   

13.
拟南芥突变体种子休眠与萌发的研究进展   总被引:8,自引:2,他引:8  
种子的休眠和萌发是一个复杂的过程,至今尚未能清楚阐明其调控机制。目前已从拟南芥突变体中鉴定了一些与种子萌发和休眠相关的基因,有助于阐明种子休眠和萌发的分子机制。本文综述了拟南芥突变体种子休眠与萌发方面的研究进展。赤霉素是促进种子萌发的主要因素之一,RGL、SPY、GCR、SLY和GAR等基因的表达参与赤霉素对种子萌发的调控。脱落酸与种子休眠有关,ABI1、ABI2、ABI3、ABI4、ABI5、FUS3、LEC、MARD和CIPK等基因参与了脱落酸的调控过程。对3类乙烯反应的突变体(ein、etr和ctr)以及油菜素内酯突变体(det和bri)的研究表明乙烯和油菜素内酯是通过拮抗脱落酸而促进种子萌发的。光对种子萌发的调节,是通过具有Ser/Thr蛋白激酶活性的光敏色素PhyA、PhyB、PhyC、PhyD和PhyE,以磷酸化/去磷酸化方式调节其它与萌发相关基因的表达。含氮化合物对种子萌发的促进,可能是以一种依赖一氧化氮的方式解除种子休眠。  相似文献   

14.
Light-requiring Grand Rapids lettuce ( Lactuca sativa L.) achenes develop skotodormancy when imbibed in darkness for 7 days at 25°C. Redried skotodormant achenes maintain this type of dormancy upon subsequent rehydration. At 25°C full germination of skotodormant achenes can be induced by continuous and intermittent red light illumination as well as by several brief red irradiations given daily. One brief (10 min) red light irradiation can partly break skotodormancy at 20°C, while at lower temperatures the same treatment results in full induction of germination. Phytochrome control of the release from skotodormancy is proven by a) the dependence of the germination response on the relative sequence of red and far-red light in cyclic irradiations, and b) the reversion of red action by subsequent far-red irradiation. The time course of germination of skotodormant achenes treated with intermittent red light depends upon the length of dark interval between the light pulses. Germination is considerably delayed compared to that of non-skotodormant ones, induced by a single brief red light treatment. This fact in combination with the requirement, over a long period of time, of Pfr action for full manifestation of germination, indicates that skotodormancy is a deeper form of dormancy. It is concluded that the germination of lettuce achenes may always be subjected to phytochrome control.  相似文献   

15.
The seeds (achenes) of Laportea bulbifera require a chilling to break their dormancy and are negatively photoblastic. Their germination is inhibited by both continuous blue light and continuous or prolonged far-red radiation. The germination of de-coated seeds, prepared by removing the fruit coats, however, was strongly inhibited by continuous far-red, but not by continuous blue light. Photoreversible germination by a brief irradiation with red light occurred when the chilled seeds were exposed to prolonged far-red light. These results suggest that far-red light may regulate the germination of L. bulbifera seeds through the phytochrome system which exists in the regions other than fruit coats and that the blue light reaction may be governed by other photoreceptor system(s).  相似文献   

16.
Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre‐harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed.  相似文献   

17.
Growth and dormancy in Lunularia are controlled by daylength,short-day promoting active growth, long-day or light-break treatmentinducing dormancy. Light-breaks of red light are highly effectivein inducing dormancy, while irradiation with other wavebandsis much less inhibitory to growth. Far-red light given afterred irradiation causes substantial reversal of the red-lighteffect, suggesting strongly that phytochrome is involved inthe photoperiodic response mechanism of Lunularia. However,even short(15 sec.) exposures to far-red light alone cause significantgrowth inhibition, and it is considered possible that far-redirradiation also leads to the formation of some of the P 730form of phytochrome.  相似文献   

18.
Imbibed seeds of Arabidopsis thaliana (L.) Heynh., passed annuallythrough a pattern of changes in dormancy. Dormancy was brokenin summer and re-induced in autumn-winter. A second small germinationflush occurred in early spring. The role of sensitivity to light,nitrate and gibberellins (GAs) in regulating annual dormancypatterns and germination was studied with the use of GA-deficient(gal-2) and wild-type seeds. Dark-incubated seeds were exposedto a natural temperature regime for periods up to 18 monthsand at regular intervals germination capacity of portions ofseeds was tested at laboratory conditions. Germination datafitted as logistic dose response curves showed that sensitivityto light varied with the seasons in both genotypes. From interpretationof curve parameters, it is proposed that the observed sensitivitychanges involve alterations in the number of receptors, in thebinding characteristics of the receptors and/or in the responsechain initiated by ligand-receptor interaction. In this responsechain GA biosynthesis is stimulated (wild type) and sensitivityto GAs is enhanced (wild type, gal -2). GA sensitivity is alsodirectly influenced by temperature, thus without the interferenceof light. However, the significance of direct regulation ofGA requirement seemed to diminish with prolonged incubationoutdoors, whereas reversible changes in light sensitivity remainedclear. Therefore, we propose that seasonal dormancy patternsare mainly regulated by changes in sensitivity to light. GAsensitivity contributes to this pattern but is not primarilycontrolling dormancy. The GA requirement for germination isobvious as gal-2 seeds did not germinate at any time of theyear when deprived of applied GAs. However, GA biosynthesisis not required for dormancy control, as a dormancy patternwas also observed in the absence of the capacity to synthesizeGAs. Nitrate or sensitivity to nitrate did not contribute tothe regulation of dormancy and germination of this species.Copyright1994, 1999 Academic Press Arabidopsis thaliana (L.) Heynh., curve fitting, dormancy, fluence response curve, germination, gibberellin, gibberellin dose response curve, hormone mutant, light, mouse-ear-cress, nitrate, phytochrome, receptor, seasonal dormancy pattern, sensitivity  相似文献   

19.
20.
种子休眠与萌发是截然不同而又紧密联系的两个生理过程,也是植物生命周期中的关键阶段,对自然状态下的植物物种繁殖与地理分布以及农业生产均具有重要意义,且两个过程受不同内源激素和环境信号之间的精确互作调控。大量研究表明,蛋白质磷酸化修饰作为一种重要的翻译后修饰方式,参与调控种子休眠与萌发以及植物逆境胁迫响应等过程并发挥重要作...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号