首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat-stable enterotoxin II of Escherichia coli (STII) is synthesized as a precursor form consisting of pre- and mature regions. The pre-region is cleaved off from the mature region during translocation across the inner membrane, and the mature region emerges in the periplasm. The mature region, composed of 48 amino acid residues, is processed in the periplasm by DsbA to form an intramolecular disulfide bond between Cys-10 and Cys-48 and between Cys-21 and Cys-36. STII formed with these disulfide bonds is efficiently secreted out of the cell through the secretory system, including TolC. However, it remains unknown which regions of STII are involved in interaction with TolC. In this study, we mutated the STII gene and examined the secretion of these STIIs into the culture supernatant. A deletion of the part covering from amino acid residue 37 to the carboxy terminal end did not markedly reduce the efficiency of secretion of STII into the culture supernatant. On the other hand, the efficiency of secretion of the peptide covering from the amino terminal end to position 18 to the culture supernatant was significantly low. These observations indicated that the central region of STII from amino acid residue 19 to that at position 36 is involved in the secretion of STII into the milieu. The experiment using a dsbA-deficient strain of E. coli showed that the disulfide bond between Cys-21 and Cys-36 by DsbA is necessary for STII to adapt to the structure that can cross the outer membrane.  相似文献   

2.
To study the folding of human Escherichia coli heat-stable enterotoxin STh, we used the major protein subunit of CS31A fimbriae (ClpG) as a marker of STh secretion and a provider of a signal peptide. We established that STh genetically fused to the N or C terminus of ClpG was able to mobilize ClpG to the culture supernatant while still retaining full enterotoxicity. These features indicate that the STh activity was not altered by the chimeric structure and suggest that spatial conformation of STh in the fusion is close to that of the native toxin, thus permitting recognition and activation of the intestinal STh receptor in vivo. In contrast to other studies, we showed that disulfide bond formation did not occur in the periplasm through the DsbA pathway and that there was no correlation between DsbA and secretion, folding, or activity. This discrepancy was not attributable to the chimeric nature of STh since there was no effect of dsbA or dsbB mutations on secretion and activity of recombinant STh from which ClpG had been deleted. Periplasmic and lysate fractions of dsbA(+) and dsbA(-) cells did not have any STh activity. In addition, the STh chimera was exclusively found in an inactive reduced form intracellularly and in an active oxidized form extracellularly, irrespective of the dsbA background. Subsequently, a time course experiment in regard to the secretion of STh from both dsbA(+) and dsbA(-) cells indicated that the enterotoxin activity (proper folding) in the extracellular milieu increased with time. Overall, these findings provide evidence that STa toxins can be cell-released in an unfolded state before being completely disulfide-bonded outside the cell.  相似文献   

3.
The Escherichia coli heat-stable enterotoxin II (STII) is a typical extracellular toxin consisting of 48 amino acid residues, of which 4 are cysteine. There are two disulfide bonds, one between Cys-10 and Cys-48 and one between Cys-21 and Cys-36. We examined the involvement of DsbA in the formation of the disulfide bonds of STII and the role of each in the secretion of STII. A dsbA mutant was transformed with a plasmid harboring the STII gene, and STII was not detected either in the cells or in the culture supernatant. Reducing the level of STII brought about the dsbA mutation restored by introducing the wild-type dsbA gene into the mutant strain. These results showed that DsbA is involved in forming the disulfide bonds of STII and that STII without these disulfide bonds is degraded during secretion. We substituted these four cysteine residues in vivo by oligonucleotide-directed site-specific mutagenesis. The amino acid sequence of the purified STII (C48S) and pulse-chase studies revealed that two intermolecular disulfide bonds must be formed to be efficiently secreted and that cleavage between amino acid residues 14 and 15 is probably the first step in the proteolytic degradation of STII.  相似文献   

4.
The heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli is an extracellular peptide toxin that evokes watery diarrhea in the host. Two types of STs, STI and STII, have been found. Both STs are synthesized as precursor proteins and are then converted to the active forms with intramolecular disulfide bonds after being released into the periplasm. The active STs are finally translocated across the outer membrane through a tunnel made by TolC. However, it is unclear how the active STs formed in the periplasm are led to the TolC channel. Several transporters in the inner membrane and their periplasmic accessory proteins are known to combine with TolC and form a tripartite transport system. We therefore expect such transporters to also act as a partner with TolC to export STs from the periplasm to the exterior. In this study, we carried out pulse-chase experiments using E. coli BL21(DE3) mutants in which various transporter genes (acrAB, acrEF, emrAB, emrKY, mdtEF, macAB, and yojHI) had been knocked out and analyzed the secretion of STs in those strains. The results revealed that the extracellular secretion of STII was largely decreased in the macAB mutant and the toxin molecules were accumulated in the periplasm, although the secretion of STI was not affected in any mutant used in this study. The periplasmic stagnation of STII in the macAB mutant was restored by the introduction of pACYC184, containing the macAB gene, into the cell. These results indicate that MacAB, an ATP-binding cassette transporter of MacB and its accessory protein, MacA, participates in the translocation of STII from the periplasm to the exterior. Since it has been reported that MacAB cooperates with TolC, we propose that the MacAB-TolC system captures the periplasmic STII molecules and exports the toxin molecules to the exterior.  相似文献   

5.
6.
7.
The mechanism of action of the heat-stable enterotoxin STa secreted from enterotoxigenic forms of Escherichia coli has remained elusive, in part due to a tedious, low-yield purification procedure. We report here a method for obtaining large amounts of a biologically active lysine-containing analog of STa. Initial attempts to express the toxin using an expression vector that did not encode a signal sequence resulted in no biologically active material being recovered either from lysed cells or as a secretory product. However, use of the secretion vector pJAL36, which contains the STII enterotoxin signal sequence, allowed large amounts of an STa derivative containing the additional sequence Ser-Thr-Lys at the amino terminus of the mature enterotoxin to be readily purified from culture supernatants. This enterotoxin analog, known as KSTa-1, was equal in biological and receptor binding activity to the native toxin STa. The lysine residue present in KSTa-1 promises to be useful as a reactive amino acid that is readily derivatized to allow coupling of the enterotoxin to supports for affinity chromatography and antigenic conjugates. Additionally, the insertion of the lysine residue carboxy terminal to the Ser-Thr sequence adds a reversible "handle" to the toxin sequence in that the Ser-Thr-Lys segment can be removed by treatment with trypsin, releasing the native form of STa.  相似文献   

8.
The Escherichia coli heat-stable enterotoxin (ST) coded for by plasmid pYK007 (Apr ST+) showed a dependence for cyclic adenosine 3',5'-monophosphate (cAMP) to express ST activity in an adenyl cyclase (cya) deletion mutant; no ST activity was detected in the presence of cAMP in a cAMP receptor protein (crp) deletion mutant or in a double deletion mutant (delta cya delta crp). The cya-crp effect on ST activity could not be accounted for by a modification of the copy number of plasmid deoxyribonucleic acid per chromosome equivalent or by an alteration in the secretion of an active intracellular enterotoxin.  相似文献   

9.
Preparative purification of Escherichia coli heat-stable enterotoxin   总被引:1,自引:0,他引:1  
Heat-stable enterotoxin (STa) isolated from bovine Escherichia coli strains was purified to homogeneity by growing the bacterial strains in a chemically defined medium, desalting, and concentrating the culture filtrate by batch adsorption chromatography on Amberlite XAD-2 resin, batch adsorption chromatography on reversed-phase silica, and preparative reversed-phase high-performance liquid chromatography. This rapid preparative purification scheme gave high recovery yields of pure STa which exhibited biochemical homology to STa purified by more complicated procedures.  相似文献   

10.
11.
Active fragments of the heat-stable enterotoxin ST I of Escherichia coli were chemically synthesized with the sequence Cys-Cys-Glu-Leu-Cys-Cys-Asn-Pro-Ala-Cys-Thr-Gly-Cys-(Tyr) and studied by proton (1H NMR) and carbon-13 (13C NMR) nuclear magnetic resonance spectroscopy as a function of pH and temperature. All of the nonexchangeable protons in the 1H NMR spectrum were assigned. Although all amide protons were present at temperatures below 25 degrees C and and pH values below 6, some of the resonances are broad and could not be assigned. The temperature dependence of these broad resonances indicates a change in conformation that is localized in the N-terminus. Other amide protons disappear at higher temperatures owing to chemical exchange with the solvent. Sufficient resonance assignments can be made at high and low temperatures to permit structural conclusions to be made. The chemical shifts of the alpha-carbon protons indicate the presence of substantial structure, which was further defined with the observed pattern of nuclear Overhauser enhancements (NOEs), coupling constants, and exchange rates. The NMR data identify a turn from Ala-14 to Cys-18. A second likely turn is centered around the proline residue. An interresidue NOE between the alpha-carbon protons of Asn-12 and Gly-17 indicates that the molecule folds back on itself. The NMR information is sufficient to define the structure of the C-terminal region of ST I. Manual model building then indicated that one arrangement of the three disulfides is particularly compatible with the NMR data and van der Waals constraints. A model incorporating the disulfide arrangement proposed by Houghten and his co-workers [Houghten, R.A., Ostresh, J.M., & Klipstein, F.A. (1984) Eur. J. Biochem. 145, 157-162] and the NMR constraints was derived with the programs PROTO [Frayman, F. (1985) Ph.D. Thesis, Northwestern University] and NOEMOT [Lane, A.N., Lefévre, J.-F., & Jardetsky, O. (1986) Biochim. Biophys. Acta 867, 45-56].  相似文献   

12.
Abstract The protein binding Escherichia coli heat-stable enterotoxin II (STII) was isolated from cell membranes of mouse intestine. The binding of 125I-labeled STII to the proteins was inhibited by unlabeled STII, showing that it is specific. Proteins cross-linked with 125I-STII were purified by column chromatography on hydroxyapatite and TSK gel. Analyses of the purified protein by SDS-polyacrylamide gel electrophorosis and gel filtration showed that the molecular mass was 25 kDa.  相似文献   

13.
Strains of Escherichia coli that host a plasmid that codes for the heat-stable (ST) enterotoxin showed 160 times more extracellular enterotoxin than intracellular activity. However, when washed bacteria were sonicated and incubated at between 50 and 85 degrees C, an activity similar to that of the ST enterotoxin was detected. No such effect was present in strains lacking the plasmid, in a plasmid ST- mutant, or in chromosomal mutants that lack a cyclic AMP-linked positive regulatory system which previously were shown to yield an ST- phenotype. The thermoactivation was inhibited by iodoacetamide and N-ethylmaleimide; chloramphenicol did not affect the phenomenon. The heat-activated ST-like enterotoxin was localized in the periplasmic space. The results are discussed in relation to the export of the toxin from the periplasm to the outside of the cell.  相似文献   

14.
Escherichia coli heat-stable enterotoxin II (STII) was purified to homogeneity by successive column chromatographies from the culture supernatant of a strain harboring the plasmid encoding the STII gene. The purified STII evoked a secretory response in the suckling mouse assay and ligated rat intestinal loop assay in the presence of protease inhibitor, but the response was not observed in the absence of the inhibitor. Analyses of the peptide by the Edman degradation method and fast atom bombardment mass spectrometry revealed that purified STII is composed of 48 amino acid residues and that its amino acid sequence was identical to the 48 carboxy-terminal amino acids of STII predicted from the DNA sequence (C. H. Lee, S. L. Mosely, H. W. Moon, S. C. Whipp, C. L. Gyles, and M. So, Infect. Immun. 42:264-268, 1983). STII has four cysteine residues which form two intramolecular disulfide bonds. Two disulfide bonds were determined to be formed between Cys-10-Cys-48 and Cys-21-Cys-36 by analyzing tryptic hydrolysates of STII.  相似文献   

15.
Infant mice were injected orally with preparations containing Escherichia coli heat-stable enterotoxin (ST) and Evans blue dye, and incubated at 22 degrees C. With enterotoxin-positive samples, the stomach was distended and contained essentially all of the dye. With enterotoxin-negative samples, the stomach remained normal in size and the dye passed freely into the intestines. The time required to obtain the maximum ratio of gut weight to body weight varied from 30 to 90 min and was dependent upon the concentration of enterotoxin. Heat-labile enterotoxin (LT) had no effect during this period. Based on these findings, the mouse incubation time was reduced from 4 h to 90 min, and the heating of test samples was retained only for confirmation of ST. The location of the dye and stomach distention served as an indicator of positive responses to ST. Incubation of the mice at room temperature (22 degrees C) was found satisfactory.  相似文献   

16.
We report here the molecular characterization of a recombinant cell line (293-STaR) expressing the heat-stable enterotoxin receptor (STaR) from human intestine. We have compared the 293-STaR cell line with the human colonic cell line T84 that endogenously expresses STa binding sites. Scatchard analysis of displacement binding studies revealed a single STa binding site with an affinity (Ki) of 97 pM in 293-STaR compared with 55 pM in T84 cells. Saturation isotherms of STa binding gave a Kd of 94 pM for the cloned receptor expressed in 293 cells and 166 pM for the receptor present in T84 cells. Kinetic measurements of STa binding to 293-STaR gave an association rate constant, K1, of 2.4 x 10(8) M-1 min-1 and a dissociation rate constant, K2, of 0.016 min-1. The half-time of dissociation was 43 min, and the Kd calculated from the ratio of the kinetic constants was 67 pM. The pH profile of STa binding showed that the number of STa binding sites is increased 3-fold at pH 4.0 compared with pH 7.0, with no effect on binding affinity. A polyclonal antibody directed against the extracellular domain of STaR immunoprecipitated two proteins of approximately 140 and 160 kDa from both 293-STaR and T84 cells. Cross-linking of 125I-STa to 293-STaR cells resulted in the labeling of proteins with a molecular mass of approximately 153, 133, 81, 68, 56, and 49 kDa, the two smallest being the more abundant. Similar results have been reported for the STaR present on rat brush border membranes. These data suggest that the STaR-guanylyl cyclase identified by molecular cloning is the only receptor for STa present in T84 cells.  相似文献   

17.
Escherichia coli and other Gram-negative bacteria produce outer membrane vesicles during normal growth. Vesicles may contribute to bacterial pathogenicity by serving as vehicles for toxins to encounter host cells. Enterotoxigenic E. coli (ETEC) vesicles were isolated from culture supernatants and purified on velocity gradients, thereby removing any soluble proteins and contaminants from the crude preparation. Vesicle protein profiles were similar but not identical to outer membranes and differed between strains. Most vesicle proteins were resistant to dissociation, suggesting they were integral or internal. Thin layer chromatography revealed that major outer membrane lipid components are present in vesicles. Cytoplasmic membranes and cytosol were absent in vesicles; however, alkaline phosphatase and AcrA, periplasmic residents, were localized to vesicles. In addition, physiologically active heat-labile enterotoxin (LT) was associated with ETEC vesicles. LT activity correlated directly with the gradient peak of vesicles, suggesting specific association, but could be removed from vesicles under dissociating conditions. Further analysis revealed that LT is enriched in vesicles and is located both inside and on the exterior of vesicles. The distinct protein composition of ETEC vesicles and their ability to carry toxin may contribute to the pathogenicity of ETEC strains.  相似文献   

18.
A globomycin-resistant mutant of Escherichia coli was found to produce a precursor of the major outer membrane lipoprotein (prolipoprotein), in which the glycine residue at position 14 within the signal peptide was replaced by an aspartic acid residue. The same mutation has been reported by Lin et al. (Proc. Natl. Acad. Sci. U.S.A. 175:4891-4895, 1978). The structural gene of the mutant prolipoprotein was inserted into an inducible expression cloning vehicle. When the mutant prolipoprotein was produced in lipoprotein-minus host cells, 82% of the unprocessed protein was found in the membrane fraction, with the remaining 18% localized in the soluble fraction. However, when the production of the mutant prolipoprotein was induced in the wild-type lpp+ host cells, only 31% of the mutant prolipoprotein was found in the membrane fraction, leaving the remaining 69% in the soluble, cytoplasmic fraction. In addition, the assembly of the wild-type lipoprotein in these cells was not affected, whether the mutant prolipoprotein was produced or not. These results suggest that secretions of both mutant and wild-type prolipoproteins utilize the same component(s) responsible for the initial stages of secretion across the cytoplasmic membrane. However, it appears that the wild-type lipoprotein has a higher affinity for these components than does the mutant lipoprotein.  相似文献   

19.
Heat-stable enterotoxin (ST(a)) elaborated by E. coli is a major cause of diarrhea. The transmembrane protein guanylyl cyclase C (GC-C) is the acknowledged receptor for ST(a) and for the mammalian peptides guanylin and uroguanylin. Binding to GC-C results in generation of cGMP, activation of type II cGMP-dependent protein kinase, phosphorylation of CFTR and increased chloride and bicarbonate secretion. We had previously shown that ST(a) receptors (GC-C) are found on the brush border membranes of small intestinal enterocytes and of colonocytes. However, since it has subsequently been shown that the endogenous ligands for these receptors, guanylin and uroguanylin, circulate in blood, we proposed the existence of ST(a) binding sites on the basolateral membranes (BLM) of colonocytes. Specific binding of 125I-ST(a) to rat colonocyte BLM was seen. The kinetics of binding to the BLM were similar to binding to BBM. The nature of the BLM receptor is unknown. This suggests that circulating guanylin and uroguanylin, analogues of ST(a), may also function via the basolateral surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号