首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The short and long latency reflex responses of human triceps brachii muscle were recorded in 14 healthy volunteers. An electromechanical hammer was used to stretch the muscle and recordings were made from a surface electromyogram. The monosynaptic tendon reflex occurred at a mean latency of 12.5 ms (SE 0.7 ms). Later responses were observed in activated conditions (weak force production, preparatory period) at a mean latency of 62.8 ms (SE 3.5 ms). The amplitude of the short latency reflex increased during weak tension, the long latency reflex amplitude seemed to increase during the preparatory period testing. The amplitude increases can be attributed to increased lower motoneuron excitability even during weak voluntary activity. The tendency towards an increased amplitude during the preparatory period may be connected with the higher regulation of the long latency reflex.  相似文献   

2.
The responses of the neurons to electrocutaneous stimulation, light flashes, and clicks in the cortical region of the motor representation of the rabbit forelimb were investigated by means of intra- and quasiintracellular recordings. In unanesthetized animals, in only eight out of 65 neurons did postsynaptic potentials (PSP) with a short (10–30 msec) latent period arise in response to light and sound. In 15 neurons, long latency (50–150 msec) responses to one or both of these stimuli were recorded. In most of the cells, short latency stable responses to stimulation of the contralateral forelimb and unstable long latency responses to light and/or sound, frequently of the nature of an increase in the background "synaptic noise," were observed. Under deep chloralose narcosis, the type of convergence was sharply changed: in most of the neurons, short latency responses to all the stimuli used appeared. However, the picture of convergence differed from that described earlier [5,6] for the motor cortex of the cat under chloralose narcosis. The responses to various stimuli were less similar to one another; the somesthetic modality substantially "predominated" (judging by the stability and nature of the interaction of the response).Brain Institute, Academy of Medical Sciences of the USSR. Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 474–483, September–October, 1971.  相似文献   

3.
A microiontophoretic study was performed to investigate the effects of a newly synthesized quinolinone derivative, 7-[3-(4-(2,3-dimethylphenyl) piperazinyl) propoxy] 2-(1H)-quinolinone (OPC-4392), on neuronal activities of the ventral tegmental area (VTA) of rats anesthetized with chloral hydrate. The VTA neurons, which were identified by antidromic stimulation of the nucleus accumbens (Acc), were classified into type I and type II neurons according to the responses to Acc stimulation: type I neurons had a long spike latency of over 7 msec (9.63 +/- 0.25 msec), and the type II, a short latency of less than 7 msec (2.98 +/- 0.27 msec) upon Acc stimulation. In all of 11 type I neurons, iontophoretically applied OPC-4392 and dopamine inhibited the antidromic spikes elicited by Acc stimulation. This inhibition was antagonized by simultaneous application of domperidone (dopamine D-2 antagonist). However, in 16 out of 19 type II neurons the antidromic spikes were not affected by either OPC-4392 or dopamine. When the effects of iontophoretically applied OPC-4392 and dopamine on spontaneous firings were tested in 32 VTA neurons identified by Acc stimulation (including type I and type II neurons), there was a relationship between the effects of these two drugs. These results suggest that OPC-4392 acts on dopamine D-2 receptors of the dopaminergic neurons in the VTA, thereby inhibiting neuronal activity.  相似文献   

4.
We have succeeded in recording short and middle latency vestibular evoked responses in human subjects. The head was held rigidly in a special, patented head holder, constructed individually for each subject, which gripped the teeth of the upper jaw. The stimulus consisted of 2/sec steps of angular acceleration impulses produced by a special motor with intensities of about 10,000°/sec2 and with a rise time of 1–2 msec. The electrical activity was recorded as the potential difference between special forehead and mastoid electrodes having a large, secure contact area with the skin. The activity was digitally filtered and averaged in 2 separate channels by means of a Microshev 2000 evoked response system. The short latency responses, with peaks at about 3.5 msec (forehead positive), 6.0 msec (forehead negative) and 8.4 msec (forehead positive; bandpass: 200–2000 Hz; average of 1024 trials), had amplitudes of about 0.5 μV. The middle latency responses had peaks at about 8.8 msec (forehead positive), 18.8 msec (forehead negative) and 26.8 msec (forehead positive; 30–300 Hz; N = 128 trials), with larger amplitudes (about 15 μV). These responses were consistently recorded in the same subject at different times and were similar in different normal subjects. Strenuous control experiments were conducted in order to ensure that these responses are not artefacts due to the movement of conducting media (head, electrodes and leads) in the electromagnetic field of the motor and are elicited by activation of normal labyrinths. Among other controls, they were not present in a cadaver, in patients with bilateral absence of nystagmus to caloric stimuli and in conducting volumes the size of the human head. They were also not masked by white noise.  相似文献   

5.
Responses of neurons in area 7 of the parietal association cortex during and after formation of a defensive conditioned reflex to sound were recorded in waking cats. Changes in spike responses of the neurons as a result of the onset of conditioned reflex limb movements were observed in 68% of neurons. Spike responses of neurons formed as a result of learning appeared only if conditioned-reflex limb movements appeared, and they were not observed if, for some reason or other, movements were absent after presentation of the positive conditioned stimulus or on extinction of the reflex. Responses of 46% neurons to conditioned stimulation preceded the conditioned-reflex motor responses by 50–450 msec. The remaining responding neurons were recruited into the response after the beginning of movement. Characteristic spike responses of neurons to the conditioned stimulus appeared 500–900 msec before the beginning of movement and, in the case of appearance of special, "prolonged" motor responses of limb withdrawal, evoked by subsequent reinforcing stimulation.  相似文献   

6.
Responses of neurons of the periaqueductal gray matter (PAG) were studied in chronic experiments on cats during formation and extinction of a defensive conditioned reflex to sound and its differential inhibition. In response to conditioned stimulation these neurons developed phasic-tonic spike responses up to 3 sec in duration. During combination of stimuli these responses were formed long before the conditioned reflex and disappeared long after the latter was extinguished. In the case of an established conditioned reflex, the onset of spike responses occurred 100–200 msec before the appearance of motor responses. An increase in spike activity of tonic character in neurons of PAG preceded voluntary movements by 100–500 msec. The responses of these neurons to presentation of a differential stimulus consisted of groups of spikes 150–200 msec in duration. They were formed with difficulty, and their manifestation was made even more difficult by an interruption during the experiment and by preceding positive stimuli. On the basis of the results a conditioned reflex can be regarded as the result of a multilevel hierarchic process of readjustment of unit activity, which begins in the nonspecific structures of the midbrain.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 15, No. 3, pp. 278–287, May–June, 1983.  相似文献   

7.
Wave VI (8.4 msec) of the brain-stem auditory evoked potential (BAEP) was maximal in a discrete region of primary auditory cortex (AI) of the anesthetized cat. Wave VI underwent rapid amplitude decreas over millimeter distances in the AI region and followed high stimulation rates. Wave VI did not show intracortical polarity inversion nor was it abolished by epicortical or intracortical GABA administration. The data are compatible with a wave VI source in the terminal axons of the thalamo-cortical radiations.Middle latency auditory responses (MAEPs) generated 10–40 msec after auditory stimulation were also recorded in a circumscribed area of AI. In contrast to wave VI, these primary auditory cortex potentials (Pa 18.3 msec; Nb 31.9 msec) underwent transcortical polarity inversion, correlated with intracortical multi-unit activity in the AI region and were reversibly altered or abolished by epicortical or intracortical GABA adminstration to the AI region. The data suggest that the Pa and Nb components of the cat MAEP are intracortically generated by neuronal elements in the AI region.  相似文献   

8.
Investigate reflex responses in muscles throughout the lower limb and low back during sudden inversion perturbations in individuals with and without Functional Ankle Instability (FAI) while walking. Forty subjects participated in the study. Surface electromyogram recordings were obtained from the fibularis (FIB), gluteus medius (GM), erector spinae (ES), and sternocleidomastoid (SCM) of the injured/matched side as well as the uninjured/matched contralateral side (FIB_CLS, GM_CLS, or ES_CLS). Latency and amplitude data were collected while subjects were walking on a custom-built perturbation walkway. The onset of the short-latency stretch reflex of the FIB was significantly later in the injured side of the FAI individuals when compared to the control group (P = 0.009). Both the short and long latency reflex amplitude was significantly smaller in the FIB muscle in the FAI group than in the control group (P < 0.008). No significant differences in latency or amplitude reflex responses were identified between the two groups in the GM, ES, FIB_CLS, GM_CLS, or ES_CLS (P > .05). Interpretation of these results indicate that during a dynamic perturbation task individuals with FAI demonstrate longer fibularis muscle latencies on the injured side while no significant changes in the proximal muscle groups. Additionally, short and long latency reflex amplitude was significantly decreased in FAI individuals.  相似文献   

9.
1. Activation of the pontine reticular formation (pRF) and the related medullary inhibitory reticulospinal (RS) system decreases the postural activity. This effect can be achieved either by local injection into the dorsal pontine tegmentum of cholinergic agonists which excite cholinoceptive pRF neurons, or by injection of noradrenergic agents which block the inhibitory influence exerted by the locus coeruleus (LC) neurons on the pRF. The main aim on the present study was to analyze the effects of tonic activation of these pRF neurons on the postural adjustments accompanying limb movements induced by motor cortex stimulation. In particular, electrodes were implanted chronically in the motor cortex of cats and stainless steel guide tubes of small size, later used for drug injection, were set bilaterally into sites just above the responsive regions. 2. Limb flexion elicited by stimulation of the motor cortex was accompanied by a diagonal pattern of postural adjustment, characterized by a decreased force exerted by the limb diagonally opposite to the moving one and an increased force exerted by the other two. 3. Microinjection into the pRF of both sides of 0.25 microliter of the muscarinic agonist bethanechol at the concentration of 8 or 16 micrograms/microliters in buffered artificial cerebrospinal fluid produced a short-lasting episode of postural atonia followed by a period of reduced postural activity, during which the cats were still able to stand on the measurement platform. Under this condition no changes in threshold, latency and amplitude of the flexion response were observed in the performing limb; however, the postural responses were considerably affected. In particular, when the performing limb was a forelimb, the other anterior limb showed a dissociation of the postural response in two distinct components. The first anticipatory component, which had a short latency (12-15 msec) and was considered to be centrally triggered, decreased in amplitude after injection of bethanechol and sometimes disappeared; on the other hand the second component, which had a long latency (50-60 msec) and was thus considered to be of reflex origin, increased in amplitude, due to the instability resulting from the depression of the early postural response. Similar results also affected to a lesser extent the hindlimbs. Moreover, body oscillations were observed and monitored from the force platforms following the late component of the postural responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Climbing fiber projections to the cerebellar paramedian lobule were investigated electrophysiologically by stimulation of bilateral superficial radial nerve (SR) and superficial peroneal nerve (SP) in the cat anesthetized with pentobarbitone. In the medial zone of the paramedian lobule, short latency climbing fiber responses to stimulation of the ipsilateral SR were recorded rostrally from the top caudal part of the intermediate folia and short latency responses to stimulation of the ipsilateral SP were obtained caudally from the bottom caudal part of the folia. In the central zone, long latency responses to stimulation of the bilateral SR and SP were obtained. "Four limbs area" in which these responses were recorded was 1.0-1.2 mm in width. Short latency responses to stimulation of the ipsilateral SR were observed rostrally from this area, and short and long latency responses to stimulation of the ipsilateral SP were distributed caudally from this area. In the lateral zone, short and long latency responses to stimulation of the ipsilateral SR were recorded rostrally from the rostral part of the intermediate folia, and long latency responses to stimulation of the ipsilateral SP were observed caudally from the caudal part of the folia. In the most lateral zone, short and long latency responses to stimulation of the ipsilateral SR were obtained rostrally from the rostral part of the intermediate folia, and long latency responses to stimulation of ipsilateral SP were recorded only in the bottom caudal part of the folia caudally from the caudal part of the folia.  相似文献   

11.
A microiontophoretic study using rats anesthetized with chloral hydrate and immobilized with gallamine triethiodide was carried out to compare the effect of talipexole (B-HT 920 CL2:2-amino-6-allyl-5,6,7,8-tetrahydro-4H-thiazolo [4,5-d]-azepine-dihydrochloride), a dopamine autoreceptor agonist, on dopaminergic neurons in the ventral tegmental area (VTA) to non-dopaminergic neurons in the VTA. VTA neurons were classified into two types according to the responses to antidromic stimulation of the nucleus accumbens (Acc): type I neurons with a long spike latency (8.69 +/- 0.24 msec) upon Acc stimulation and low spontaneous firing rate (6.80 +/- 1.34/sec), and type II neurons with a short latency (2.76 +/- 0.20 msec) and high spontaneous firing rate (26.77 +/- 7.05/sec), probably corresponding to dopaminergic and non-dopaminergic neurons, respectively. In type I neurons, microiontophoretic application of talipexole and dopamine inhibited antidromic spike generation elicited by Acc stimulation, and talipexole-induced inhibition was antagonized by domperidone (dopamine D-2 antagonist). In type II neurons, however, the antidromic spikes were not affected by either talipexole or dopamine. Furthermore, spontaneous firing was also inhibited by iontophoretically applied talipexole and dopamine in most type I neurons, but rarely affected by either drug. Inhibitory effects of talipexole were antagonized by domperidone. These results suggest that talipexole acts on dopamine D-2 receptors, thereby inhibiting the dopaminergic neurons in the VTA.  相似文献   

12.
Summary Evoked potentials were recorded from the hypothalamus of acutely-prepared estrous guinea-pigs responding to electrical stimulation of the vaginal cervix. The latency ranged from 38 to 60 msec. The peak of the first positive wave appeared 50 to 90 msec after the stimulation, usually followed by a negative wave in 120 msec. These responses were obtained from the mid-hypothalamus. The cervical stimulation subsequently induced the release of hypophysial luteotropin (LTH) as indicated by the occurrence of pseudopregnancy. According to the results, the mechanism triggering hypothalamic potential changes was discussed in connection with the LTH secretion.Research Fellow of the Alexander von Humboldt-Foundation in 1967/68.  相似文献   

13.
It has recently been reported that stimulation of the region of the subfornical organ (SFO) elicits an increase in arterial pressure. However, the mechanisms and forebrain neural circuitry that are involved in this cardiovascular response have not been elucidated. The present study was done in urethane-anaesthetized rats to determine whether selective activation of SFO neurons elicit cardiovascular responses and whether these responses were mediated by a pathway involving the paraventricular nucleus of the hypothalamus (PVH). Stimulation sites which required the lowest threshold current (30 microA) to elicit a pressor response and at which the largest rise in mean arterial pressure (MAP; 22 +/- 2 mmHg) was elicited at a constant current intensity (150 microA) were histologically localized in the region of the SFO. Short (mean peak latency; 4 +/- 2 s) and long (mean peak latency; 61 +/- 8 s) latency increases in MAP were observed during and after electrical stimulation of the SFO, respectively. Cardiac slowing accompanied the short latency pressor response and cardioacceleration was observed in most (57%) of the cases to accompany the late pressor response. Microinjection of L-glutamate into the SFO consistently elicited cardiovascular responses qualitatively similar to those observed during electrical stimulation. Ganglionic blockade abolished the short latency increase in MAP and the accompanying bradycardia. However, the long latency pressor and cardioacceleratory responses were not altered by ganglionic blockade and adrenalectomy. Selective bilateral electrolytic or kainic acid lesions of the region of the PVH significantly attenuated the cardiovascular responses elicited by stimulation of the SFO. These data suggest that activation of neurons in the SFO elicit cardiovascular responses partially mediated by sympathetic outflow through a neural pathway involving the PVH.  相似文献   

14.
Single unit responses of the first (SI) and second (SII) somatosensory areas to stimulation of the ventroposterior thalamic nucleus (VP) were investigated in cats immobilized with D-tubocurarine. In response to VP stimulation 12.0% of reacting SI neurons and 9.5% of SII neurons generated an antidromic spike. In most antidromic responses of both SI and SII neurons the latent period did not exceed 1.0 msec. The minimal latent period of spike potentials during orthodromic excitation was 1.5 msec in SI and 1.7 msec in SII. Neurons with an orthodromic spike latency of not more than 3.0 msec were more numerous in SI than those with a latency of 3.1–4.5 msec. The ratio between the numbers of neurons of these two groups in SII was the opposite. In SII there were many more neurons with a latency of 5.6–8.0 msec than in SI. EPSPs appeared after a latent period of 1.1–9.0 msec in SI and of 1.4–6.6 msec in SII. The latent period of IPSPs was 1.5–6.8 msec in SI and 2.2–9.4 msec in SII. The relative importance of different pathways for excitatory and inhibitory influences of VP on SI and SII neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 115–121, March–April, 1976.  相似文献   

15.
Reflex EMG responses to sudden passive flexion of the elbow were recorded from anconeus and triceps brachii in 5 human volunteers. While the subjects were required not to resist the flexion movement, they were required to maintain an extension torque of 3.5 or 7.0 Nm prior to its onset. Under these isotonic conditions, the latency and amplitude of the reflex activities from anconeus and triceps brachii did not differ significantly, in contrast to the findings of Le Bozec (1986) in actively relaxed subjects. The myotatic/postmyotatic EMG amplitude ratio did not provide a further quantitative way to distinguish between these muscles. The absence of a difference between the reflex activities of a slow (anconeus) and a fast (triceps brachii) muscle is interpreted as resulting from a strong drive of spindle activity on the whole extensor motoneuron pool, which outweights the differences in recruitment due to the differing relative amounts of type I and type II fibres in the two muscles. Differences like those described between finger and calf muscles by other authors are thought to be due to the relative degree of corticalization of these muscles. All short and long latency responses of the muscles increased in magnitude and decreased in latency with increasing background EMG activity as well as with increasing initial length. The position and tonic activity dependency of these responses is explained in terms of alpha-gamma coactivation.  相似文献   

16.
Stretch reflex responses of m. biceps brachii and m. brachioradialis of ten normal adults were studied before and after 20 days of strict bed rest. A standard torque perturbation (15 Nm, 170 ms) was applied to the forearm to induce reflex electromyographic (EMG) activities of the two muscles investigated. Totally 30 perturbations were applied during submaximal isometric elbow flexion movements at 80 deg flexed joint angle, and ensemble averaged EMG waveforms were calculated by aligning the signal to the onset of perturbations. All subjects showed that both short and long latency stretch reflex FMG activities of m. biceps brachii were reduced immediately after 20 days bed rest, and then recovered gradually to pre-bed rest levels at one- to two-months after bed rest, whereas there was no such variation in the stretch reflex induced in m. brachioradialis. It was demonstrated that the muscle stretch reflex gain might be reduced with long-term inactivity, but the effects on stretch reflex gains were different in the two tested muscles.  相似文献   

17.
The response properties of jittery movement fibers (JMF) in the crayfish optic tract reacting to a non-moving temporally patterned light were analyzed. The JMFs usually show no response during the regular flickering of stationary light with a flash duration of less than 50 msec when the stimulus frequency is between 4 and 20 per second; however they do respond when the flickering stops if a certain number of flashes have been given. The response appears about 50 msec after the first missing flash, i.e., the latency of the response after the last flash of the train changed from 100 to 300 msec. Thus, the “off” response at the end of the flicker is entrained to the stimulus repetition interval and locked onto the time of the first missing flash. The response of a sustaining fiber to an identical stimulus has quite different features as illustrated in Fig. 2. Some of the fibers show responses to the beginning part of the flicker but not necessarily to each flash, and habituate after several flashes. When a single flash longer than 250 msec is given, the fiber shows an “off” response with about 50 msec latency, as it does to sustained light. Some fibers show a double burst of “off” discharge to single flashes; the first at 50 msec is followed after 120 msec by the second one. However, when the flash duration is between 250 and 50 msec, a single flash elicits little or no response. The latency of the “off” response is as much as 300 msec for short single flashes less than 50 msec. An “on” response to flashes of light is observed when the inter-stimulus interval is more than 5 sec. The responses to the beginning part of flicker train are not simply locked to the just preceding flash except the “on” response to the very first one, but they can be the long latency responses to the flash before that. This response is modified in latency by the succeeding flashes in flicker trains and becomes entrained to the missing flash. Four types of entrainment are classified on the basis of the change in latency from the missing flash with regard to the number of flashes in a train. In most cases, 10 flashes are sufficient to entrain the response to the first missing flash. Non-resposiveness, i.e., habituation, during a regular flicker, may be due to an active inhibitory process, initiated by each succeeding light pulse. The response to the missing flash, therefore results from a disinhibited modified response to the last flash. Some JMFs continue to respond to the flicker even after a considerable number of flashes but only when the repetition interval is about 120 msec corresponding well to the interval of the double burst “off” discharge, thus the JMF has a resonant frequency of about 8 Hz. The JMFs appear to be acting as an irregularity detector in temporal sequence.  相似文献   

18.
Many species of echolocating bats emit intense orientation sounds. If such intense sounds directly stimulated their ears, detection of faint echoes would be impaired. Therefore, possible mechanisms for the attenuation of self-stimulation were studied with Myotis lucifugus. The acoustic middle-ear-muscle reflex could perfectly and transiently regulate the amplitude of an incoming signal only at its beginning. However, its shortest latency in terms of electromyograms and of the attenuation of the cochlear microphonic was 3-4 and 4-8 msec, respectively, so that these muscles failed to attenuate orientation signals by the reflex. The muscles, however, received a message from the vocalization system when the bat vocalized, and contracted synchronously with vocalization. The duration of the contraction-relaxation was so short that the self-stimulation was attenuated, but the echoes were not. The tetanus-fusion frequency of tha stapedium muscle ranged between 260 and 320/sec. Unlike the efferent fibres in the lateral-line and vestibular systems, the olivo-cochlear bundle showed no sign of attenuation of self-stimulation.  相似文献   

19.
Experiments on cats using extra- and intracellular recording methods showed that stimulation of the motor cortex of both hemispheres leads to considerable modulation of responses to stimulation of cutaneous and muscular lower limb afferents in spinal ventral horn interneurons in segments L6, 7. Three types of conditioning corticofugal effect were observed: facilitation, inhibition, and facilitation followed by inhibition (biphasic effect), and inhibitory effects predominated. The duration of facilitation of responses did not exceed 30–40 msec. The characteristics of the time course of inhibition varied: in some cases it began with relatively short intervals (8–15 msec), in other cases with an interval of 30–40 msec; its duration was 125–500 msec, or sometimes more. The effect of cortical stimulation on responses to stimulation of various afferent inputs of the same interneuron was shown to differ. The character of the conditioning corticofugal effect correlated with the latent period of segmental responses: facilitation was observed only in responses with a relatively short latent period (under 5 msec); responses with a longer latent period were mainly inhibited. The type of cortical effect also depended on the function performed by the activated afferent input. It is suggested that differential descending control of segmental polysynaptic responses recorded in ventral horn interneurons with wide convergence of afferent influences takes place in the initial stages of the reflex are. The mechanism of this control is discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neiorofizologiya, Vol. 14, No. 6, pp. 563–571, November–December, 1982.  相似文献   

20.
In 15 normal subjects the latency of electrically elicited long-latency reflexes (LLRs) of thenar muscles was compared with somatosensory evoked potentials (SEPs) after median nerve stimulation and with the latencies of thenar muscle potentials after transcranial stimulation (TCS) of the motor cortex. Assuming a transcortical reflex pathway the intracortical relay time for the LLR was calculated to be 10.4±1.9 msec (mean±S.D.) or 8.1 ± 1.6 msec depending on the experimental conditions. The duration of the cortical relay time is not correlated with the peripheral or central conduction times, with body size or arm length. If the LLRs of hand muscles are conducted transcortically the long duration of the cortical relay time suggests a polysynaptic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号