首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondrocytes lose their phenotypic traits, including type II collagen, after serial passage in monolayer cultures. Osteogenin, a bone morphogenetic protein, induces cartilage and bone in nonskeletal sites. This investigation examined the ability of osteogenin to promote the reexpression of cartilage phenotype by dedifferentiated chondrocytes obtained from rabbit articular cartilage. The results revealed that osteogenin, in synergism with selected growth factors, promoted the reexpression of type II collagen and proteoglycans by dedifferentiated chondrocytes in agarose. Insulin, a constituent of the basal medium, appeared to be essential for the colony-forming aspect of this phenomenon, since when insulin was replaced by insulin-like growth factor-1 colony formation did not occur. Epidermal growth factor, platelet-derived growth factor (PDGF), and basic fibroblast growth factor appeared to be an optimal combination for the action of osteogenin. Neutralizing antibodies to transforming growth factor-beta did not influence the response to osteogenin. It is noteworthy that, compared to freshly passaged cells, those stored in liquid nitrogen were not as responsive to osteogenin and growth factors. A higher concentration of fibroblast growth factor in conjunction with osteogenin and PDGF, increased the responsiveness of frozen cells only in part, as the Alcian blue-positive proteoglycan matrix was not restored completely.  相似文献   

2.
Primary monolayers of rabbit articular chondrocytes synthesize high levels of type II collagen and proteoglycan. This capacity was used as a marker for the expression of the differentiated phenotype. Such cells were treated with 1 microgram/ml retinoic acid (RA) for 10 d to produce a modulated collagen phenotype devoid of type II and consisting of predominantly type I trimer and type III collagen. After transfer to secondary culture in the presence of RA, the stability of the RA-modulated phenotype was investigated by culture in the absence of RA. Little reexpression of type II collagen synthesis occurred in this period unless cultures were treated with 3 X 10(-6) M dihydrocytochalasin B to modify microfilament structures. Reexpression of the differentiated phenotype began between days 6-8 and was essentially complete by day 14. Substantial reexpression occurred by day 8 without a detectable increase in cell rounding. Colony formation, characteristic of primary chondrocytes, was infrequent even after reexpression was complete. These data suggest that the integrity of microfilament cytoskeletal structures can be a source of regulatory signals that mechanistically appear to be more proximal to phenotypic change than the overt changes in cell shape that accompany reexpression of subculture-modulated chondrocytes in agarose culture.  相似文献   

3.
Rabbit articular chondrocytes were treated with retinoic acid (RA) to eliminate the differentiated phenotype marked by the synthesis of type II collagen and high levels of proteoglycan. Exposure of such cells to transforming growth factor-β1 (TGF-β1) in secondary culture under serum-free and RA-free, defined conditions led to reexpression of the differentiated phenotype. The microfilament modifying drug, dihydrocytochalasin B (DHCB), enhanced the effectiveness of TGF-β1 and produced a threefold stimulation of type II collagen reexpression (measured by 2-D CNBr peptide mapping) at 0.3 ng/ml TGF-β1 without altering total collagen synthesis. Type II collagen reexpression was maximal from 1 to 5 ng/ml TGF-β1, with or without DHCB. The effect of DHCB on proteoglycan synthesis was maximal at 1 ng/ml TGF-β1. At this dose TGF-β alone produced no increase in 35 SO4 incorporation, while simultaneous treatment with DHCB caused a sevenfold stimulation of proteoglycan synthesis. DHCB-independent stimulation of proteoglycan reexpression occurred between 5 and 15 ng/ml TGF-β1. In contrast, TGF-β1-dependent stimulation of proteoglycan synthesis in differentiated chondrocytes in primary monolayer culture was not substantially affected by DHCB. The collagen data suggest that TGF-β1 utilizes separate pathways to control phenotypic change and collagen (matrix) synthesis. Microfilament modification by DHCB selectively enhances the effectiveness of the TGF-β1-dependent signaling pathway that controls reexpression of the differentiated phenotype.  相似文献   

4.
Osteogenin and related bone morphogenetic proteins are members of the transforming growth factor-beta superfamily, and were isolated by their ability to induce cartilage and bone formation in vivo. The influence of osteogenin, purified from bovine bone, and of recombinant human bone morphogenetic protein-2B (BMP-2B) has been examined in bovine articular cartilage explants. Both differentiation factors stimulated in a dose-dependent manner the synthesis of proteoglycans and decreased their rate of degradation. At a dose of 30 ng/ml, proteoglycan synthesis was increased to levels observed with either 20 ng/ml insulin-like growth factor I, 10 ng/ml transforming growth factor-beta, or 20% fetal bovine serum. This increase of biosynthetic rates above basal medium levels was observed in young, adolescent, and adult tissues. Analysis of the size of the newly synthesized proteoglycans, the glycosaminoglycan chain size, and the glycosaminoglycan type of explants treated with osteogenin or BMP-2B were very comparable to each other, and to proteoglycans isolated from cartilage treated with either insulin-like growth factor I or fetal bovine serum. These results demonstrate that osteogenin and BMP-2B alone are capable of stimulating and maintaining the chondrocyte phenotype in vitro.  相似文献   

5.
A major goal of the combined effort of basic scientists and plastic and reconstructive surgeons is the development of novel bone substitutes based on osteogenic growth and differentiation factors with optimal delivery systems for skeletal repair. Osteogenin is a protein initiator of bone differentiation. The present study examined the osteogenic potential of osteogenin in combination with porous hydroxyapatite replicas obtained after hydrothermal conversion of calcium carbonate exoskeletons of corals. Bovine osteogenin, with an apparent molecular weight of 28 to 42 kDa, purified by hydroxyapatite-Ultrogel adsorption chromatography, heparin-Sepharose affinity chromatography, and HR Sephacryl S-200 molecular sieve chromatography, was delivered into rods of nonresorbable and resorbable hydroxyapatite replicas with an average porosity of 600 microns. A total of 48 rods were bioassayed for osteogenic activity by intramuscular implantation into eight adult baboons (Papio ursinus) as a prerequisite for clinical trials in humans. Bovine osteogenin fractions reconstituted with baboon insoluble collagenous bone matrix were implanted in an additional four adult baboons. Specimens were harvested at 30 and 90 days after implantation and subjected to histomorphometry and alkaline phosphatase activity determination. Differentiation of bone occurred in nonresorbable hydroxyapatite rods, both osteogenin-treated and controls. However, no bone formation was observed in resorbable rods, even in the presence of osteogenin. These results demonstrate that the surface and chemical characteristics of the substratum, independent of the osteogenic stimulus, have a profound influence on the morphogenesis of bone. The demonstration of bone induction in nonhuman primates with porous nonresorbable hydroxyapatite replicas and baboon insoluble collagenous bone matrix reconstituted with bovine osteogenin establishes the therapeutic potential of the principle of bone induction in craniofacial, periodontal, and orthopedic reconstructive surgery.  相似文献   

6.
The differentiated phenotype of rabbit articular chondrocytes was modulated in primary culture by treatment with 1 microgram/ml retinoic acid (RA) and reexpressed in secondary culture by treatment with the microfilament-disruptive drug dihydrocytochalasin B (DHCB) in the absence of RA. Because the effective dose of DHCB (3 microM) did not elicit detectable cell rounding or retraction, the nature and extent of microfilament modification responsible for induction of reexpression was evaluated. The network of microfilament stress fibers detected with rhodamine-labeled phalloidin in primary control chondrocytes was altered by RA to a "cobblestone" pattern of circularly oriented fibers at the cell periphery. Subsequent treatment with DHCB resulted in rapid changes in this pattern before overt reexpression. Stress fibers decreased in number and were reoriented. Parallel arrays of long fibers that traversed the cell were evident, in addition to fiber fragments and focal condensations of staining. Immunofluorescent staining of intermediate filaments revealed a marked decrease in complexity and intensity during RA treatment but no change during reexpression. An extended microtubular architecture was present throughout the study. These results clearly identify microfilaments as the principal affected cytoskeletal element and demonstrate that their modification, rather than complete disruption, is sufficient for reexpression. The specificity of DHCB and the reorientation of these filaments before reexpression of the differentiated phenotype suggests a causative role in the mechanism of reexpression.  相似文献   

7.
The effect of fibroblast growth factor (FGF) on the growth of chondrocytes in soft agar was examined. FGF induced colony formation by chick embryo and rabbit chondrocytes. The colony-forming efficiency of FGF-exposed chondrocytes was similar to that of Rous sarcoma virus-transformed chondrocytes (15-20%). Other mitogenic agents tested, such as epidermal growth factor, insulin, insulin-like growth factor-l, and platelet-derived growth factor, induced very low levels of colony formation. The induction of growth in soft agar of chondrocytes by FGF was not due to cells' phenotypic transformation, because chondrocytes grown in soft agar with FGF retained the ability to synthesize cartilage-characteristic proteoglycan. FGF did not induce growth in soft agar of chondrocytes whose phenotypic expression was suppressed by retinoic acid or 5-bromodeoxyuridine. In addition, FGF did not induce growth in soft agar of primary fibroblasts and normal rat kidney (NRK) cells. These results suggest that FGF selectively stimulates growth of differentiated chondrocytes in soft agar.  相似文献   

8.
Differentiated rat thyroid epithelial cells, infected in vitro with a temperature-sensitive mutant of the Kirsten murine sarcoma virus, expressed at the permissive temperature (33 degrees C) some phenotypic properties typical of transformed cells, including morphological features, colony formation in agar, and induction of tumors in newborn animals. Specific functional markers of these differentiated cells, i.e., synthesis/secretion of thyroglobulin, synthesis of thyroglobulin mRNA and iodide uptake, were blocked during growth at 33 degrees C. Normal morphology, failure to grow in agar, and the requirement of hormones for optimal growth were all restored after shifting to the temperature nonpermissive for transformation (39 degrees C), though the typical differentiated functions remained blocked. Infection with a leukemia helper virus clone (Moloney or Kirsten murine leukemia virus) did not lead to the loss of the differentiated phenotype of rat epithelial thyroid cells, thus demonstrating that the loss of the differentiated phenotype is caused by the sarcoma virus component. These results indicate that the expression of some of the phenotypic properties of transformed differentiated rat thyroid epithelial cells is under the direct control of the p21 thermosensitive activity, whereas the block in the expression of two typical differentiation markers of thyroid epithelial cells is irreversible and probably controlled by different mechanisms.  相似文献   

9.
Implantation of demineralized tooth matrix in subcutaneous sites results in new bone formation locally. The osteoinductive activity of the tooth matrix was dissociatively extracted in 4.0 M guanidine hydrochloride and the residue was devoid of biologic activity. The bone inductive protein, osteogenin, was partially purified by heparin affinity chromatography. The heparin binding fraction initiated the bone differentiation cascade when implanted with guanidine extracted, inactive bone or tooth matrices. These results imply a cooperative interaction between the soluble osteogenin and collagenous substratum in bone induction.  相似文献   

10.
11.
The differentiated phenotype of rabbit articular chondrocytes can be characterized by the synthesis of high levels of cartilage specific proteoglycan and collagen (type II). Treatment of these cells in primary monolayer culture for periods of up to 18 days with 0.03 to 3.0 micrograms/ml retinoic acid (RA) resulted in suppression of colony formation, altered morphology, and decreased (eightfold) proteoglycan and collagen synthesis. With the exception of collagen synthesis, these changes were complete with all doses after 4 days of treatment. Collagen synthesis declined more slowly; it was dose dependent after 4 days and maximally inhibited by all doses by 9 days. Detailed analysis of the collagen phenotype was performed using SDS-PAGE of intact chains and 2-D CNBr peptide analysis. RA caused cessation of type II synthesis, and transient stimulation of type III and type I trimer collagen synthesis, without induction of type I collagen. Essentially identical results were obtained with retinol. The resultant collagen phenotype differed significantly from the type I-containing phenotype induced by subculture. Thus, suppression of this differentiated program did not elicit a common modulated phenotype. The results are discussed in the context of direct and indirect mechanisms of RA-dependent modulation of chondrocyte gene expression.  相似文献   

12.
The ERK cascade is activated by hormones, cytokines, and growth factors that result in either proliferation or growth arrest depending on the duration and intensity of the ERK activation. Here we provide evidence that the MEK1/ERK module preferentially provides proliferative signals, whereas the MEK2/ERK module induces growth arrest at the G1/S boundary. Depletion of either MEK subtype by RNA interference generated a unique phenotype. The MEK1 knock down led to p21cip1 induction and to the appearance of cells with a senescence-like phenotype. Permanent ablation of MEK1 resulted in reduced colony formation potential, indicating the importance of MEK1 for long term proliferation and survival. MEK2 deficiency, in contrast, was accompanied by a massive induction of cyclin D expression and, thus, CDK4/6 activation followed by nucleophosmin hyperphosphorylation and centrosome over-amplification. Our results suggest that the two MEK subtypes have distinct ways to contribute to a regulated ERK activity and cell cycle progression.  相似文献   

13.
Osteogenin, a novel bone differentiation factor, was recently purified and characterized. We examined its effect on the proliferation and differentiation of MC3T3-E1 osteoblast-like cells. Cell proliferation was inhibited the first 48 h after addition of osteogenin, and this effect was independent of serum. Osteogenin did not influence the cell morphology. Alkaline phosphatase promptly increased in a dose and time-dependent manner and appeared to be specific. Treatment with TGF-beta 1 resulted in inhibition of alkaline phosphatase activity, and was reversed by osteogenin within 48 h. Cell cultures treated with osteogenin for 72 h after confluence became responsive to parathyroid hormone. Synthesis of collagenous proteins was stimulated by osteogenin. The present results demonstrate a significant influence of osteogenin on the differentiation of osteogenic phenotype in MC3T3-E1 cells in vitro.  相似文献   

14.
15.
Osteogenin, a bone morphogenetic protein, in conjunction with insoluble collagenous bone matrix initiates local endochondral bone differentiation by induction in vivo. This study, by exploiting the affinity of native osteogenin for hydroxyapatite, was designed to construct a delivery system for the expression of the biologic activity of osteogenin in nonhealing calvarial defects of adult primates. After exposure of the calvaria, 64 cranial defects, 25 mm in diameter, were prepared in 16 adult male baboons (Papio ursinus). Defects were implanted with disks of porous nonresorbable and resorbable hydroxyapatite substrata obtained after hydrothermal conversion of calcium carbonate exoskeletons of corals. In each animal, one disk of each hydroxyapatite preparation was treated with osteogenin isolated and purified from baboon bone matrix after sequential chromatography on heparin-Sepharose, hydroxyapatite, and Sephacryl S-200 gel filtration columns. The remaining two defects were implanted with one disk of each hydroxyapatite preparation without osteogenin as control. Histomorphometry on decalcified sections prepared on days 30 and 90 showed superior osteogenesis in osteogenin-treated nonresorbable hydroxyapatite specimens as compared with controls. On day 90, substantial bone formation also had occurred in control nonresorbable hydroxyapatite specimens. On day 90, but not on day 30, significantly greater amounts of bone had formed in osteogenin-treated resorbable specimens as compared with resorbable controls. Overall, resorbable substrata performed poorly when compared with nonresorbable substrata, perhaps due to a premature dissolution of the implants. These results provide evidence that the biologic activity of osteogenin can be restored and delivered by a substratum other than the organic collagenous matrix, inducing rapid bone differentiation in calvarial defects of adult nonhuman primates. The adsorption strategy of osteogenin on porous inorganic nonimmunogenic substrata may help to design appropriate osteogenic delivery systems for craniofacial and orthopedic applications in humans.  相似文献   

16.
Calcitonin gene-related peptide (CGRP) has inflammatory and immunoregulatory properties. CGRP directly inhibits IL-7 induced proliferation in developing B cells and also induces soluble factors that inhibit IL-7 responses. We identified 2 cytokines, IL-6 and TNF-alpha, induced by CGRP, that inhibit IL-7 pre-B cell responses. CGRP induction of IL-6 and TNF-alpha mRNA in long-term bone marrow cultures is transient and IL-6 or TNF-alpha inhibit IL-7 induced colony formation by 60%. When added with CGRP, colony formation is completely inhibited. TNF-alpha directly inhibits IL-7 responses in B220(+)/IgM(-) cells whereas IL-6 inhibits only colony formation with whole bone marrow. This suggests that the effect of IL-6 is mediated by other cells in the bone marrow. These results suggest that the indirect effect of CGRP on IL-7 depends in part on induction of IL-6 and TNF-alpha.  相似文献   

17.
Chang TY  Tsai WJ  Chou CK  Chow NH  Leu TH  Liu HS 《Life sciences》2003,73(10):1265-1274
Ha-ras(Val 12) overexpression was positively correlated with colony formation by NIH/3T3 derivative "2-12" cells harboring an inducible Ha-ras(Val 12) transgene. The ras-farnesylation inhibitor, Lovastatin, completely suppressed colony formation at higher dosages. However, Ha-ras oncogene overexpression alone could not stimulate colony formation under serum-deprived conditions, suggesting that ras is required but not sufficient for supporting colony formation. Substituting cow colostrum (AC-2) for serum did not result in colony formation from 2-12 cells in soft agar, suggesting the colostrum lacked or contained insufficient amounts of factors that stimulate colony formation. Supplementation of AC-2-containing medium with growth factors, such as insulin-like growth factor-1 (IGF-1), partially restored the capability of anchorage-independent cell growth induced by Ha-ras overexpression. Consistently, antibodies specific for IGF-1 receptors only partially blocked colony formation from 2-12 cells. The data indicate that multiple factors, including IGF-1, are required for Ha-ras-dependent colony formation. Signal transduction studies revealed that, under Ha-ras overexpression conditions, IGF-1 utilizes phosphatidyl inositol 3-kinase and NF-kappaB to transduce colony formation-related signaling.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号