首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Experiments were performed to measure the extent to which enzymes bound to alpha 2-macroglobulin (alpha 2M) could be dissociated from the complex. Noncovalent complexes are known to exist between alpha 2M and proteases, such as methyl-trypsin that have had their lysyl amino covalently blocked. Complexes between the inhibitor and native enzymes also have a certain fraction noncovalent binding. Because of the severe steric hindrance imposed on enzymes bound to alpha 2M, even in the noncovalent mode, it has been proposed in the literature that they are not dissociable in the usual sense but, rather, are "trapped" in clathrate-like complexes. The results presented here show that lysyl-blocked methyl-thrombin, or native thrombin are released from their alpha 2M complex by an excess of other lysyl-blocked or native proteases. Under conditions where native thrombin is displaced, labeled enzymes can be incorporated, indicating the inhibitor is intact by the criterion of incorporating enzymes. Likewise, native elastase can be released from its alpha 2M complex by excess cold elastase or the inactive anhydrotrypsin, the latter experiment being carried out with an excess of the low-molecular-weight inhibitor diisopropyl phosphofluoridate. In conjunction with previous results showing that lysyl-blocked enzymes are removed from alpha 2M by soybean trypsin inhibitor, the data indicate that, however sterically hindered, alpha 2M-bound enzymes are dissociable and no unique "trapped" intermediate need be postulated.  相似文献   

2.
Anhydrotrypsin was isolated in high purity from the product of base elimination from phenylmethanesulfonyl-trypsin, by a single operation of affinity chromatography. The adsorbent used for the chromatography was an agarose derivative coupled with peptides containing C-terminal arginine residues. As the affinity of the adsorbent for anhydrotrypsin was high compared with that for trypsin, purification of the enzyme derivative was easily achieved without the prior inactivation of trypsin which had been regenerated during the elimination reaction. Comparative studies of the ligand interaction specificities with anhydrotrypsin and trypsin confirmed the stronger interaction of the former protein with product-type ligands such as Bz-Arg-OH. No marked differences were observed between them in affinities toward substrate-type ligands such as Bz-Arg-NH2. The higher affinity of anhydrotrypsin was found to be limited to product-type ligands of L-configuration, i.e., the protein displayed an ability to discriminate the L-ligand from its optical isomer. THE PKa value for the ionization form of anhydrotrypsin responsible for the interaction with Bz-Arg-OH was estimated to be 7.60+/-0907  相似文献   

3.
Experiments were performed to define the relation between covalent binding of enzymes to β2-macroglobulin (α2M), the specific proteolysis of α2M subunits to 85K fragments, and the reactivity of the methylamine site on α2M. We studied the reaction of α2M with native trypsin, anhydrotrypsin, and two active lysyl-blocked derivatives, methyl-trypsin and dimethylmaleyl-trypsin, the last with reversibly modified amino groups that can be regenerated at low pH. The results were: (1) All enzymes tested reacted with α2M but only native trypsin formed covalent complexes (not dissociable by sodium dodecyl sulfate). Trypsin and the lysyl-blocked enzymes caused complete proteolysis of the α2M subunits, in agreement with previous studies. (2) The dimethyl-maleyl-trypsin became covalently bound to α2M only after removing the blocking groups of the bound enzyme, indicating that sequential proteolysis and covalent bond formation is possible. Under the conditions used for deblocking, there was no change in the covalent/noncovalent binding ratio of native trypsin, anhydrotrypsin, or the other lysyl-blocked derivative, methyl-trypsin. (3) Native trypsin or anhydrotrypsin displaced methyl- or dimethylmaleyl-trypsin from their α2M complexes but the newly bound enzymes with free amino groups did not form covalent bonds indicating that enzymes must remain in association with the inhibitor for the bond to form. (4) Methylamine reacts with noncovalent α2M complexes but not with covalent complexes. (5) Methylamine-treated α2M can still form complexes with trypsin but at a drastically reduced rate and only noncovalent complexes are formed. In summary, sequential proteolysis and covalent bond formation is possible under certain conditions, and there is a strong correlation between covalent binding and loss of methylamine reactivity. The latter observation is suggestive evidence for the identity of the covalent binding site of α2M and the putative thiol ester of the methylamine site. The enzyme lysyl amino groups, are likewise possible candidates for attacking nucleophile at that site.  相似文献   

4.
alpha2-plasmin inhibitor is a proteinase inhibitor in plasma which efficiently inhibits the lysis of fibrin clots induced by plasminogen activator. The nature of the binding of the inhibitor to trypsin or plasmin was studied by the chemical treatment of the enzyme-inhibitor complex with 7.5 M hydrazine at pH 10.0. With the hydrazine treatment, the complexes were degraded to proteins corresponding to the respective enzyme and inhibitor moieties. These results indicate that the covalent bond between the inhibitor and the enzymes is a carboxylic ester. The binding reaction of the inhibitor to active site-modified trypsin was also studied. The inhibitor formed complexes with anhydrotrypsin and carboxyamidomethylated trypsin. The complexes were dissociated in the presence of 1% sodium dodecyl sulfate, to the individual components: the respective enzyme and inhibitor moieties. The inhibitor, however, did not form a complex with diisopropylphosphorylated trypsin regardless of the presence or absence of the denaturing reagent. These results suggest the contribution of non-covalent interactions to the complex formation between the inhibitor and native enzymes.  相似文献   

5.
Chicken alpha-macroglobulin (alpha M) and ovomacroglobulin were purified by Ni+2 chelate chromatography. These proteins had similar subunit structure as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chicken alpha M bound 1.0 mol and ovomacroglobulin bound 0.8 mol 125I-trypsin per mol inhibitor, respectively. Ovomacroglobulin cleared rapidly from the circulation of mice, and the clearance was inhibited by asialoorosomucoid, but native chicken alpha M cleared slowly (t 1/2 greater than 1 h). After reaction with trypsin, this alpha-macroglobulin cleared rapidly (t 1/2 = 3 min), and this clearance was inhibited by a 1000-fold molar excess of human alpha 2M-methylamine. Ovomacroglobulin-trypsin did not inhibit the binding of 0.2 nM 125I-labeled human alpha 2M-methylamine to mouse peritoneal macrophages in vitro, but chicken alpha M reacted with trypsin inhibited the binding by 50% at 1.9 nM. A kappa I of 1.1 nM was calculated for the binding of chicken alpha M-trypsin to the mammalian alpha-macroglobulin receptor. This affinity is comparable to that obtained with human and bovine alpha 2M.  相似文献   

6.
We have compared the reactions of trypsin with human alpha 2-macroglobulin (alpha 2M), and three rat plasma protease inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2M. All four of these proteins appear to contain reactive thiol esters. The electrophoretic mobility in agarose gels of human and rat alpha 2M is increased by 1 mol of trypsin, while the mobility of alpha 1M and alpha 1I3 is decreased. Treatment with methylamine causes similar mobility changes, except in the case of rat alpha 2M. Titration of human and rat macroglobulins by repeated small additions of trypsin and by assay of liberated SH groups or enhanced ligand fluorescence revealed a stoichiometry of about 1 mol of trypsin/mol of inhibitor. In contrast, addition of macroglobulin to a fixed amount of trypsin and detection of residual amidase or protease activity revealed a stoichiometry of about 2 mol of trypsin for 1 mol of human alpha 2M, about 1.4 mol for rat alpha 1M, and about 1 mol for rat alpha 2M. One mol of trypsin reacted with 2 or more mol of alpha 1I3 by the criteria of SH groups liberated or protease inhibition. Methylamine-treated rat alpha 2M binds a significant amount of trypsin releasing about 2 mol of SH. Radioactive beta-trypsin was covalently bound to subunits of the purified plasma inhibitors. The Mr of the labeled products with rat and human alpha 2M had molecular weights which suggested trypsin was bound to intact as well as cleaved subunit chains and also to multiple chains via cross-linking. Rat alpha 1M also produced a product which may be an intact subunit alpha chain plus trypsin. Greater than 80% of the trypsin was bound covalently to these inhibitors at low molar ratios.  相似文献   

7.
Titration experiments were employed to measure the binding stoichiometry of alpha 2M for trypsin at high and low concentrations of reactants. These titration experiments were performed by measuring the SBTI-resistant trypsin activity and by direct binding measurements using 125I-labeled trypsin. The binding stoichiometry displayed a marked dependence upon protein concentration. At high alpha 2M concentrations (micromolar), 2 mol of trypsin are bound/mol of inhibitor. However, at low alpha 2M concentrations (e.g., 0.5 nM), only 1.3 mol of trypsin were bound/mol of inhibitor. Sequential additions of subsaturating amounts of trypsin to a single aliquot of alpha 2M also resulted in a reduction in the final binding ratio. A model has been formulated to account for these observations. A key element of this model is the observation that purified 1:1 alpha 2M-proteinase complexes are not capable of binding a full mole of additional proteinase [Strickland et al. (1988) Biochemistry 27, 1458-1466]. The model predicts that once the 1:1 alpha 2M-proteinase complex forms, this species undergoes a time-dependent conformational rearrangement to yield a complex with greatly reduced proteinase binding ability. According to this model, the ability of alpha 2M to bind 2 mol of proteinase depends upon the association rate of the second enzyme molecule with the binary (1:1) complex, the enzyme concentration, and the rate of the conformational alteration that occurs once the initial complex forms. Modeling experiments suggest that the magnitude of the rate constant for this conformational change is in the order of 1-2 s-1.  相似文献   

8.
The unique steric inhibition of endopeptidases by human alpha(2)M (alpha(2)-macroglobulin) and the inactivation of the latter by methylamine were examined in relation to each other. Progressive binding of trypsin by alpha(2)M was closely correlated with the loss of the methylamine-reactive sites in alpha(2)M: for each trypsin molecule bound, two such sites were inactivated. The results further showed that, even at low proteinase/alpha(2)M ratios, no unaccounted loss of trypsin-binding capacity occurred. As alpha(2)M is bivalent for trypsin binding and no trypsin bound to electrophoretic slow-form alpha(2)M was observed, this indicates that the two sites must react (bind trypsin) in rapid succession. Reaction of [(14)C]methylamine with alpha(2)M was biphasic in time; in the initial rapid phase complex-formation with trypsin caused a largely increased incorporation of methylamine. In the subsequent slow phase trypsin had no such effect. These results prompted further studies on the kinetics of methylamine inactivation of alpha(2)M with time of methylamine treatment. It was found that conformational change of alpha(2)M and decrease in trypsin binding (activity resistant to soya-bean trypsin inhibitor) showed different kinetics. The latter decreased rapidly, following pseudo-first-order kinetics. Conformational change was much slower and followed complex kinetics. On the other hand, binding of (125)I-labelled trypsin to alpha(2)M did follow the same kinetics as the conformational change. This discrepancy between total binding ((125)I radioactivity) and trypsin-inhibitor-resistant binding of trypsin indicated formation of anomalous complexes, in which trypsin could still be inhibited by soya-bean trypsin inhibitor. Further examination confirmed that these complexes were proteolytically active towards haemoglobin and bound (125)I-labelled soya-bean trypsin inhibitor to the active site of trypsin. The inhibition by soya-bean trypsin inhibitor was slowed down as compared with reaction with free trypsin. The results are discussed in relation to the subunit structure of alpha(2)M and to the mechanism of formation of the complex.  相似文献   

9.
Treatment of human alpha 2-macroglobulin (alpha 2M) with proteinase results in cleavage of the alpha 2M subunits and subsequently in a conformational change in the inhibitor. This change irreversibly traps the proteinase and is accompanied by the generation of four thiol groups as well as exposure of receptor recognition sites. cis-Dichlorodiammineplatinum(II) (cis-DDP) causes extensive intersubunit cross-linking of alpha 2M. Incubation of alpha 2M or cis-DDP-treated alpha 2M with trypsin results in complete subunit cleavage; however, trypsin treatment of cis-DDP-alpha 2M does not result in a conformational change as determined by nondenaturing polyacrylamide gel electrophoresis (PAGE), receptor recognition site exposure, or appearance of thiol groups from the inhibitor. These results are in marked contrast to previous studies which demonstrated that incubation of cis-DDP-treated alpha 2M with CH3NH2 resulted in thiol ester bond cleavage and receptor recognition site exposure. cis-DDP-treated alpha 2M bound only 0.13 mol of 125I-trypsin/mol of cis-DDP-alpha 2M. Incubation of trypsin-treated cis-DDP-alpha 2M with diethyldithiocarbamate (DDC), a potent chelator of platinum compounds, results in the removal of the intersubunit cross-links and completion of the alpha 2M conformational change as determined by nondenaturing PAGE. Complete receptor recognition site exposure and the appearance of 3.3 thiol groups/mol of alpha 2M also occur following this treatment. These results demonstrate that cross-linking of alpha 2M by cis-DDP prevents a conformational change in the inhibitor which is necessary for thiol ester bond activation and cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Characterization of thrombin binding to alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
The formation and structural characteristics of the human alpha 2-macroglobulin (alpha 2M)-thrombin complex were studied by intrinsic protein fluorescence, sulfhydryl group titration, electrophoresis in denaturing and nondenaturing polyacrylamide gel systems, and in macromolecular inhibitor assays. The interaction between alpha 2M and thrombin was also assessed by comparison of sodium dodecyl sulfate-gel electrophoretic patterns of peptides produced by Staphylococcus aureus V-8 proteinase digests of denatured alpha 2M-125I-thrombin and alpha 2M-125I-trypsin complexes. In experiments measuring fluorescence changes and sulfhydryl group exposure caused by methylamine, we found that thrombin produced its maximum effects at a mole ratio of approximately 1.3:1 (thrombin:alpha 2M). Measurements of the ability of alpha 2M to bind trypsin after prior reaction with thrombin indicated that thrombin binds rapidly at one site on alpha 2M, but occupies the second site with some difficulty. Intrinsic fluorescence studies of trypsin binding to alpha 2M at pH 5.0, 6.5, and 8.0 not only revealed striking differences in trypsin's behavior over this pH range, but also some similarities between the behavior of thrombin and trypsin not heretofore recognized. Structural studies, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to measure alpha 2M-125I-thrombin covalent complex formation, indicated that covalency reached a maximum at a mole ratio of approximately 1.5:1. At this ratio, only 1 mol of thrombin is bound covalently per mol of alpha 2M. These gel studies and those of proteolytic digests of denatured alpha 2M-125I-trypsin and alpha 2M-125I-thrombin complexes suggest that proteinases form covalent bonds with uncleaved alpha 2M subunits. The sum of our results is consistent with a mechanism of proteinase binding to alpha 2M in which the affinity of the proteinase for alpha 2M during an initial reversible interaction determines its binding ratio to the inhibitor.  相似文献   

11.
The unique steric type of inhibition of endopeptidases by human alpha 2-macroglobulin (alpha 2-M) and the inactivation of the latter by methylamine were examined in relation to the internal thioesters in alpha 2M. The present results confirm our previous findings that disruption of the internal thioesters, is not in itself sufficient to cause the conformational change of alpha 2M typical of alpha 2-M-proteinase complexes; the electrophoretically slow form of alpha 2M with [14C]methylamine incorporated was isolated. Moreover, this group is stabilized by derivatization of the exposed cysteine thiol groups. Cyanylation with 2,4-dinitrophenyl thiocyanate during the methylamine reaction was the most effective procedure, yielding essentially only slow-form alpha 2M. Other thiol-specific reagents were less effective. When allowed to react with trypsin the cyanylated derivative (slow-form alpha 2M with thioesters broken) produced anomalous complexes; only half the expected amount of trypsin was bound, whereas the complexes were fully inhibited by soya-bean trypsin inhibitor and were proteolytically active. Despite this, the anomalous complexes were recognized by two highly specific probes: the fibroblast alpha 2M-complex receptor and the monoclonal antibody (F2B2) directed against the receptor-recognition site on alpha 2M complexes. The results show that the internal thioesters in alpha 2M are necessary for the conformational change producing sterically inhibited endoproteinase complexes, but do not participate as such in receptor-mediated endocytosis of these complexes.  相似文献   

12.
Although it is known that most of the plasma proteinase inhibitors form complexes with proteinases that are not dissociated by SDS (sodium dodecyl sulphate), there has been disagreement as to whether this is true for alpha 2M (alpha 2-macroglobulin). We have examined the stability to SDS with reduction of complexes between alpha 2M and several 125I-labelled proteinases (trypsin, plasmin, leucocyte elastase, pancreatic elastase and papain) by gel electrophoresis. For each enzyme, some molecules were separated from the denatured alpha 2M chains, but amounts ranging from 8.3% (papain) to 61.2% (trypsin) were bound with a stability indicative of a covalent link. Proteolytic activity was essential for the covalent binding to occur, and the proteinase molecules became attached to the larger of the two proteolytic derivatives (apparent mol.wt. 111 000) of the alpha 2M subunit. We take this to mean that cleavage of the proteinase-susceptible site sometimes leads to covalent-bond formation between alpha 2M and proteinase. Whatever the nature of this bond, it does not involve the active site of the proteinase, as bound serine-proteinase molecules retain the ability to react with the active-site-directed reagent [3H]Dip-F (di-isopropyl phosphorofluoridate). Our conclusion is that the ability to form covalent links is not essential for the inhibitory capacity of alpha 2M. It may, however, help to stabilize the complexes against dissociation or proteolysis.  相似文献   

13.
Incubation of trypsin with m-guanidinobenzenesulfonic acid methyl ester (mGBSOM) under mild conditions resulted in its quantitative and specific conversion to N-3-methylhistidinyl-57-trypsin (methyltrypsin). The interactions of alpha-2-plasmin inhibitor (alpha 2PI) and alpha-1-proteinase inhibitor (alpha 1PI) with the active-site modified enzymes methyltrypsin and dehydroalanyl-195-trypsin (anhydrotrypsin) were studied by thionine difference spectroscopy. For methyltrypsin the KA with alpha 1PI and alpha 2PI was 2.7 X 10(5) M-1 and 1.3 X 10(5) M-1, respectively, and with anhydrotrypsin, 7.0 X 10(3) M-1 and 3.2 X 10(5) M-1, respectively.  相似文献   

14.
Human alpha 2-macroglobulin (alpha 2M) undergoes a conformational change after reaction with proteases. In this report, it is shown that although two trypsin molecules may bind simultaneously to each alpha 2M, only one trypsin is necessary to induce alpha 2M conformational change. Ternary complexes of alpha 2M and either two radioiodinated trypsins or two nonradioiodinated trypsins were purified by gel filtration chromatography. The nonradioactive complex did not bind 125I-trypsin, even after incubation for 24 h with the free protease present at a large molar excess. Under comparable conditions, a large molar excess of nonradioactive trypsin did not cause significant dissociation of the complex prepared with radioiodinated protease. Equations are presented that distinguish between two separate models of protease binding and demonstrate that binary alpha 2M-trypsin complex retains no significant trypsin binding activity despite the presence of a vacant protease binding site. Purified alpha 2M-plasmin complex, with 1.10 mol of plasmin/mol of inhibitor, also retained no trypsin binding activity as assessed with radioiodinated protein binding experiments. These studies suggest that reactions of alpha 2M with proteases are accurately described by the "trap hypothesis" (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724) independent of protease size or binding stoichiometry.  相似文献   

15.
After cleavage of the thioester bonds of human alpha 2-macroglobulin (alpha 2M) by methylamine, the inhibitor undergoes an extensive conformational change and loses its ability to bind proteinases. In contrast, similar cleavage in the presence of dinitrophenyl thiocyanate, a reagent that cyanylates the liberated thiol groups, does not change the mobility of alpha 2M in gel electrophoresis, and the inhibitor also retains activity [Van Leuven, Marynen, Cassiman & Van den Berghe (1982) Biochem. J. 203, 405-411]. Analyses in this work show that also the spectroscopic properties of alpha 2M are essentially unperturbed under these conditions. These observations are consistent with the major change of the conformation of the protein having been arrested by the cyanylation reaction. However, several functional properties of the protein are altered, indicating that a limited conformational change does occur. The apparent stoichiometry of binding of trypsin is thus decreased to about 0.5 mol of enzyme/mol of alpha 2M. Nevertheless trypsin induces a similar conformational change in all molecules of the modified inhibitor as that induced in untreated alpha 2M. This behaviour indicates a similar mode of binding of the enzyme to the modified alpha 2M as to intact alpha 2M, but also a high extent of non-productive activation of binding sites in the modified inhibitor. A further difference to untreated alpha 2M is that most of the bound trypsin molecules react considerably faster with soya-bean trypsin inhibitor. The rate of inhibition of thrombin is also greatly decreased, and the modified inhibitor is more sensitive than untreated alpha 2M to proteolysis at sites outside the ''bait'' region. The properties of the cyanylated human alpha 2M are thus similar to those of bovine alpha 2M in which the thioester bonds have been cleaved by methylamine in the absence of the cyanylating reagent [Björk, Lindblom & Lindahl (1985) Biochemistry 24, 2653-2660]. These results indicate that the thioester bonds of human and bovine alpha 2M are not required as such for the stability of the gross conformation of the protein or for the binding of proteinases. Nevertheless they participate directly in maintaining certain structural features, similar in the two inhibitors, that are necessary for full proteinase-binding ability. Disruption of these structures leads to a slower and less efficient trapping of the enzymes.  相似文献   

16.
The plasma protease inhibitor alpha 2-macroglobulin (alpha 2M) was reacted in vitro with cis-dichlorodiamineplastinum(II) (cis-DDP). Following the reaction, alpha 2M demonstrated a significantly decreased ability to bind trypsin as determined by esterase activity assays in the presence of soybean trypsin inhibitor and studies with radiolabeled trypsin. Inactivation of alpha 2M by cis-DDP was not associated with a conversion to the "fast" electrophoretic form, as determined on nondenaturing gels, in contrast to the inactivation of alpha 2M by proteases and certain amine salts. The extent of reaction increased with the elevation of temperature within the thermal stability range of the protein; however, variation of pH within the range 6.82-8.55 had little effect. Binding of [14C]methylamine to alpha 2M was not affected by cis-DDP. The conformational change, however, which normally accompanies this reaction did not occur. It is concluded that the alpha 2M thiolesters are most likely not reactive sites for cis-DDP. cis-DDP-treated alpha 2M failed to dissociate into quarter subunits under denaturing and reducing conditions, suggesting cross-linking of subunits. This cross-linking may be responsible for locking the alpha 2M quarternary structure into the "slow conformation."  相似文献   

17.
Leupeptin (acyl peptidyl-L-argininal) is a potent inhibitor of trypsin and related proteases. We analyzed the association of leupeptim with bovine trypsin kinetically, assuming that it proceeds by a pathway which involves two steps: E + I in equilibrium K1 Complex I k-2 in equilibrium k+2 Complex II. The observed dissociation constant (K1) for the first step was 1.24 X 10(-3) M (at pH 8.2 15 degrees C) and the two first-order rate constants (k+2 and k-2) were 166 s-1 and 1.75 X 10(-3.s-1, respectively (at pH 8.2, 15 degrees C). The dissociation constant (Kd) for the whole process was calculated from these parameters to be 1.34 X 10(-8) M. This value is compatible with that determined directly by an independent static method (2.36 X 10(-8) M). We also measured Kd for the leupeptine complex of anhydrotrypsin, a trypsin derivative in which the active-site hydroxyl group is missing. The observed value was about 5 orders of magnitude larger than Kd and was rather similar to K1 in native trypsin. A elupeptin isomer which contains a D-argininal residue did not show strong affinity towards trypsin. These findings suggest that complex II consists of a covalent hemiacetal adduct formed between the serine hydroxyl group in the enzyme active site and the aldehyde group in the inhibitor. The pH dependencies of the dissociation constant and other parameters show that deprotonation of the charge-relay sustem in the active site is important for the formation and stabilization of complex II.  相似文献   

18.
Lymphokine activated killer cell lysis of K562 cells was inhibited by alpha 2-macroglobulin (alpha 2M), soybean trypsin inhibitor, and alpha 1-proteinase inhibitor. In serum free medium 2 mg/ml alpha 2M suppressed target cell lysis in a 4-h cytotoxic assay with about 40%. Suppression was dose and time dependent. Cytotoxicity was unaffected by alpha 2M concentrations less than 0.25 mg/ml, and by alpha 2M added later than 1.5 h from start of assay. Pre-treatment of effector (but not of target) cells with alpha 2M was even more suppressive than the presence of alpha 2M during assay. Cell-mediated cytotoxicity was not inhibited by alpha 2M treated with methylamine or by various alpha 2M-proteinase complexes. In contrast, alpha 2M-proteinase complex as well as native alpha 2M suppressed the proliferation of Ag-activated T cells. However, methylamine-treated alpha 2M did not inhibit T cell proliferation, and suppression by alpha 2M-proteinase complex was significantly reduced after inhibition of the alpha 2M-bound proteinase. On incubation at 4 degrees C with lymphokine-activated killer cells, alpha 2M reacted with cell associated proteinases and changed from electrophoretically "slow" to "fast" form. Cell associated proteinases bound by alpha 2M showed chymotrypsin- and trypsin-like specificities and their activity surpassed activity caused by cellular leakage and secretion. The present results strongly indicate that alpha 2M mediates immunosuppression in its capacity as a proteinase inhibitor and suggest inhibition of (T)cell surface-associated proteinases as a possible mode of suppression.  相似文献   

19.
By repeated treatments of trypsin with phenylmethylsulfonyl fluoride (PMSF), followed by base elimination of PMS from the PMS-trypsin, a catalytically inactive anhydrotrypsin preparation of low (less than 1%) active trypsin content was obtained. Inactive material was removed by affinity chromatography on trypsin inhibitor-Sepharose 4B and the purified anhydrotrypsin with full binding capacity for trypsin inhibitors was coupled to cyanogen bromide-activated Sepharose 4B. When used below its maximum capacity for trypsin inhibitors the anhydrotrypsin-Sepharose-4B affinity column absorbed both classes of inhibitors present in soybean. When overloaded, the Kunitz type was bound preferentially. Based on this observation, conditions for the partial separation of the two types of inhibitors were worked out.  相似文献   

20.
I Bj?rk  T Lindblom  P Lindahl 《Biochemistry》1985,24(11):2653-2660
Cleavage of the thio ester bonds of human alpha2-macroglobulin (alpha 2M) by methylamine leads to an extensive conformational change and to inactivation of the inhibitor. In contrast, cleavage of these bonds in bovine alpha 2M only minimally perturbs the hydrodynamic volume of the protein [Dangott, L. J., & Cunningham, L. W. (1982) Biochem. Biophys. Res. Commun. 107, 1243-1251], as well as its spectroscopic properties, as analyzed by ultraviolet difference spectroscopy, circular dichroism, and fluorescence in this work. A conformational change analogous to that undergone by human alpha 2M thus does not occur in the bovine inhibitor. However, changes of several functional properties of bovine alpha 2M are induced by the amine. The apparent stoichiometry of inhibition of trypsin thus is reduced from about 1.2 to about 0.7 mol of enzyme/mol of inhibitor. In spite of this decrease, the interaction with the proteinase induces similar conformational changes in methylamine-treated alpha 2M as in intact alpha 2M, as revealed by spectroscopic analyses, indicating that the mode of binding of the proteinase to the inhibitor is essentially unperturbed by thio ester bond cleavage. The reaction with methylamine also greatly increases the sensitivity of bovine alpha 2M to proteolysis by trypsin at sites other than the "bait" region. Moreover, the second-order rate constant for the reaction with thrombin is reduced by about 10-fold. These results indicate that the thio ester bonds of bovine alpha 2M, although not required per se for the binding of proteinases, nevertheless are responsible for maintaining certain structural features of the inhibitor that are of importance for full activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号