首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tsx protein from the outer membrane of Escherichia coli is known to be involved in the permeation of nucleosides across the outer membrane under limiting substrate conditions. We purified Tsx from an E. coli strain that overproduces Tsx. The purified protein was still functional since it could neutralize the Tsx-specific bacteriophage T6 in vitro. When the purified Tsx was reconstituted into a lipid bilayer, there was a large increase of the membrane conductance, indicating pore-forming activity of Tsx in vitro. This increase could be strongly blocked with adenosine and to a much lesser extent with cytidine. Titration of the pore conductance with adenosine or cytidine suggested the presence of a binding site for nucleosides in the Tsx pore, with a Ks of 6 X 10(-4) and 2 X 10(-2) M for adenosine and cytidine, respectively. We propose that the Tsx protein functions in vivo as a pore that specifically facilitates the permeation of nucleosides across the outer membrane due to its binding site for nucleosides.  相似文献   

2.
LamB (maltoporin) of Salmonella typhimurium was found to be more strongly associated with the murein than OmpF. It was purified in one step using a hydroxyapatite (HTP) column. Reconstitution of the pure protein with lipid bilayer membrane showed that LamB of S. typhimurium formed small ion-permeable channels with a single channel conductance of about 90 pS in 1 M KCl and some preference for cations over anions. The conductance concentration curve was linear, which suggested that LamB of S. typhimurium does not contain any binding site for ions. Pore conductance was completely inhibited by the addition of 20 mM maltotriose. Titration of the LamB-induced membrane conductance with different sugars, including all members of the maltooligosaccharide series up to seven glucose residues, suggested that the channel contains, like LamB (maltoporin) of Escherichia coli, a binding site for sugars. The binding constant of sugars of the maltooligosaccharide series increased with increasing number of glucose residues up to five (saturated). Small sugars had a higher stability constant for sugar binding relative to LamB of E. coli. The advantage of a binding site inside a specific porin for the permeation of solutes is discussed with respect to the properties of a general diffusion porin.  相似文献   

3.
Ye J  van den Berg B 《The EMBO journal》2004,23(16):3187-3195
Tsx is a nucleoside-specific outer membrane (OM) transporter of Gram-negative bacteria. We present crystal structures of Escherichia coli Tsx in the absence and presence of nucleosides. These structures provide a mechanism for nucleoside transport across the bacterial OM. Tsx forms a monomeric, 12-stranded beta-barrel with a long and narrow channel spanning the outer membrane. The channel, which is shaped like a keyhole, contains several distinct nucleoside-binding sites, two of which are well defined. The base moiety of the nucleoside is located in the narrow part of the keyhole, while the sugar occupies the wider opening. Pairs of aromatic residues and flanking ionizable residues are involved in nucleoside binding. Nucleoside transport presumably occurs by diffusion from one binding site to the next.  相似文献   

4.
Summary Lipid bilayer experiments were performed with the sugar-specific LamB (maltoporin) channel ofEscherichia coli outer membrane. Single-channel analysis of the conductance steps caused by LamB showed that there was a linear relationship between the salt concentration in the aqueous phase and the channel conductance, indicating only small or no binding between the ions and the channel interior. The total or the partial blockage of the ion movement through the LamB channel was not dependent on the ion concentration in the aqueous phase. Both results allowed the investigation of the sugar binding in more detail, and the stability constants of the binding of a large variety of sugars to the binding site inside the channel were calculated from titration experiments of the membrane conductance with the sugars. The channel was highly cation selective, both in the presence and absence of sugars, which may be explained by the existence of carbonyl groups inside the channel. These carbonyl groups may also be involved in the sugar binding via hydrogen bonds. The kinetics of the sugar transport through the LamB channel were estimated relative to maltose by assuming a simple one-site, two-barrier model from the relative rates of permeation taken from M. Luckey and H. Nikaido (Proc. Natl. Acad. Sci. USA 77:165–171 (1980a)) and the stability constants for the sugar binding given in this study.  相似文献   

5.
Ion current through single outer membrane protein F (OmpF) trimers was recorded and compared to molecular dynamics simulation. Unidirectional insertion was revealed from the asymmetry in channel conductance. Single trimer conductance showed particularly high values at low symmetrical salt solution. The conductance values of various alkali metal ion solutions were proportional to the monovalent cation mobility values in the bulk phase, LiCl相似文献   

6.
The membrane of erythrocytes infected with malaria parasites is highly permeable to a large variety of solutes, including anions, carbohydrates, amino acids, nucleosides, organic and inorganic cations and small peptides. The altered permeability is presumed to be due to the activation of endogenous dormant channels, the new permeability pathways. The latter have been studied by different techniques—isosmotic lysis and tracer fluxes—and recently by patch-clamping. Here we analyze all available published data and we show that there is generally a good agreement between the two first methods. From the fluxes we calculate the number of channels per cell using reasonable assumptions as to the radius of the channel, and assuming that penetration through the channel is by diffusion through a water-filled space. The number of channels so calculated is <10 for most solutes, but ~400 for anions and the nucleosides thymidine and adenosine. This latter number is not far from that calculated from patch-clamp experiments. However, the anion flux measured directly by tracer is an order of magnitude larger than expected from conductance measurements. We conclude that the new permeability pathways consist of two types of channels; one is present in small number, and is charge- and size-selective. The other type is about 100-fold more abundant and is anion-selective, but does not admit non-electrolytes other than perhaps nucleosides.  相似文献   

7.
8.
Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.  相似文献   

9.
The interaction of phosphate ions with the Pseudomonas aeruginosa anion-specific protein P channel was probed. The single-channel conductance of protein P incorporated into planar lipid bilayer membranes in the presence of 0.3 M H2PO-4 was shown to be 6.0 pS, demonstrating that protein P channels allowed the permeation of phosphate. When large numbers of protein P channels were incorporated into lipid bilayer membranes in the presence of 40 mM Cl-, addition of small concentrations of phosphate resulted in reduction of macroscopic Cl- conductance in a dose- (and pH-) dependent fashion. This allowed calculation of an I50 value of e.g. 0.46 mM at pH 7.0, suggesting that the affinity of protein P for its normal substrate phosphate was at least 60-100-fold greater than the affinity of the channel for other ions such as chloride. Pyrophosphate and the phosphate analogue, arsenate, also inhibited macroscopic Cl- conductance through protein P with I50 values at pH 7.0 of 4.9 mM and 1.3 mM, respectively. To probe the nature of the phosphate binding site, the epsilon-amino groups of available lysine residues of protein P were chemically modified. Acetylation and carbamylation which produced uncharged, modified lysines destroyed both the anion (e.g. Cl-) binding site and the phosphate binding site as determined by single-channel experiments and macroscopic conductance inhibition experiments respectively. Nevertheless, the modified proteins still retained their trimeric configuration and their ability to reconstitute single channels in lipid bilayer membranes. Methylation, which allowed retention of the charge on the modified lysine residues, increased the Kd of the channel for Cl- 33-fold and the I50 for phosphate inhibition of macroscopic Cl- conductance 2.5-4-fold. A molecular model for the phosphate binding site of the protein P channel is presented.  相似文献   

10.
The 20-pS chloride channel of the human airway epithelium.   总被引:5,自引:1,他引:4       下载免费PDF全文
The single-channel inside-out patch clamp technique was used to characterize chloride channels in the apical membranes of human airway epithelial cells maintained in primary culture. Patches were obtained from single isolated cells or from cells at the edges of confluent groups. The channel seen most often, in 24% of all patches, had a conductance of approximately 20 pS and had a linear current-voltage relationship in symmetric chloride solutions. The anion selectivity sequence for the channel was NO3- greater than Cl- greater than HCO3-, and it was impermeable to gluconate ions, indicating that the channel diameter lies between 4.7 and 5.5 A. Current through the channel saturated at high chloride concentrations, and the relationship between channel current and chloride concentration could be approximated by the Michaelis-Menten equation. Analysis of the channel's anion permeability and its current vs. concentration relationship indicates that it can be described by the one-ion channel theory, with a relatively weak binding site inside the channel. Histograms of channel open and closed durations were constructed using the log binning technique and could be well fitted by triple exponential distributions, suggesting that the channel has at least three open and three closed states.  相似文献   

11.
We report results from microscopic molecular dynamics and free energy perturbation simulations of the KcsA potassium channel based on its experimental atomic structure. Conformational properties of selected amino acid residues as well as equilibrium positions of K(+) ions inside the selectivity filter and the internal water cavity are examined. Positions three and four (counting from the extracellular site) in the experimental structure correspond to distinctly separate binding sites for K(+) ions inside the selectivity filter. The protonation states of Glu71 and Asp80, which are close to each other and to the selectivity filter, as well as K(+) binding energies are determined using free energy perturbation calculations. The Glu71 residue which is buried inside a protein cavity is found to be most stable in the neutral form while the solvent exposed Asp80 is ionized. The channel altogether exothermically binds up to three ions, where two of them are located inside the selectivity filter and one in the internal water cavity. Ion permeation mechanisms are discussed in relation to these results.  相似文献   

12.
Mutations at many sites within the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore region result in changes in chloride conductance. Although chloride binding in the pore – as well as interactions between concurrently bound chloride ions – are thought to be important facets of the chloride permeation mechanism, little is known about the relationship between anion binding and chloride conductance. The present work presents a comprehensive investigation of a number of anion binding properties in different pore mutants with differential effects on chloride conductance. When multiple pore mutants are compared, conductance appears best correlated with the ability of anions to bind to the pore when it is already occupied by chloride ions. In contrast, conductance was not correlated with biophysical measures of anion:anion interactions inside the pore. Although these findings suggest anion binding is required for high conductance, mutations that strengthened anion binding had very little effect on conductance, especially at high chloride concentrations, suggesting that the wild-type CFTR pore is already close to saturated with chloride ions. These results are used to support a revised model of chloride permeation in CFTR in which the overall chloride occupancy of multiple loosely-defined chloride binding sites results in high chloride conductance through the pore.  相似文献   

13.
We investigated the mechanism whereby ions cross dihydropyridine- sensitive (L-type) Ca channels in guinea pig ventricular myocytes. At the single-channel level, we found no evidence of an anomalous mole- fraction effect like that reported previously for whole-cell currents in mixtures of Ba and Ca. With the total concentration of Ba + Ca kept constant at 10 (or 110) mM, neither conductance nor absolute unitary current exhibits a paradoxical decrease when Ba and Ca are mixed, thereby weakening the evidence for a multi-ion permeation scheme. We therefore sought independent evidence to support or reject the multi- ion nature of the L-type Ca channel by measuring conductance at various permeant ion concentrations. Contrary to the predictions of models with only one binding site in the permeation pathway, single-channel conductance does not follow Michaelis-Menten kinetics as Ba activity is increased over three orders of magnitude. Two-fold variation in the Debye length of permeant ion solutions has little effect on conductance, making it unlikely that local surface charge effects could account for these results. Instead, the marked deviation from Michaelis- Menten behavior was best explained by supposing that the permeation pathway contains three or more binding sites that can be occupied simultaneously. The presence of three sites helps explain both a continued rise in conductance as [Ba2+] is increased above 110 mM, and the high single-channel conductance (approximately 7 pS) with 1 mM [Ba2+] as the charge carrier; the latter feature enables the L-type channel to carry surprisingly large currents at physiological divalent cation concentrations. Thus, despite the absence of an anomalous mole- fraction effect between Ba and Ca, we suggest that the L-type Ca channel in heart cells supports ion flux by a single-file, multi-ion permeation mechanism.  相似文献   

14.
The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution.  相似文献   

15.
The curare-induced subconductance state of the nicotinic acetylcholine receptor (AChR) of mouse skeletal muscle was examined using the patch-clamp technique. Two mechanisms for the generation of subconductance states were considered. One of these mechanisms entails allosteric induction of a distinct channel conformation through the binding of curare to the agonist binding site. The other mechanism entails the binding of curare to a different site on the protein. Occupation of this site would then limit the flow of ions through the channel. The voltage dependence and concentration dependence of subconductance state kinetics are consistent with curare binding to a site within the channel. The first order rate constant for binding is 1.2 X 10(6) M-1s-1 at 0 mV, and increases e-fold per 118 mV of membrane hyperpolarization. The rate of curare dissociation from this site is 1.9 X 10(2)s-1 at 0 mV, and decreases e-fold per 95 mV hyperpolarization. The equilibrium constant is 1.4 X 10(-4) M at 0 mV, and decreases e-fold per 55 mV hyperpolarization. This voltage dependence suggests that the fraction of the transmembrane potential traversed by curare in binding to this site is 0.46 or 0.23, depending on whether one assumes that one or both charges of curare sense the electric field. Successive reduction and alkylation of the AChR agonist binding sites with dithiothreitol (DTT) and N-ethyl maleimide (NEM), a treatment which results in the loss of responsiveness of the AChR to agonists, produced no change in curare-induced subconductance events, despite the fact that after this treatment most of the channel openings occurred spontaneously. Mixtures of high concentrations of carbamylcholine (CCh) with a low concentration of curare, which produce channel openings gated predominantly by CCH, resulted in subconductance state kinetics similar to those seen in curare alone at the same concentration. Thus displacement by CCh of curare from the agonist binding sites does not prevent curare from inducing subconductances. The results presented here support the hypothesis that curare induces subconductance states by binding to a site on the receptor other than the agonist binding sites, possibly within the channel pore. It is the occupation of this site by curare that limits the flow of ions through an otherwise fully opened channel.  相似文献   

16.
We synthesized homologated truncated 4′-thioadenosine analogues 3 in which a methylene (CH2) group was inserted in place of the glycosidic bond of a potent and selective A3 adenosine receptor antagonist 2. The analogues were designed to induce maximum binding interaction in the binding site of the A3 adenosine receptor. However, all homologated nucleosides were devoid of binding affinity at all subtypes of adenosine receptors, indicating that free rotation through the single bond allowed the compound to adopt an indefinite number of conformations, disrupting the favorable binding interaction essential for receptor recognition.  相似文献   

17.
Modulation of L-type Ca2+ channel current by extracellular pH (pHo) was studied in vascular smooth muscle cells from bovine pial and porcine coronary arteries. Relative to pH 7.4, alkaline pH reversibly increased and acidic pH reduced ICa. The efficacy of pHo in modulating ICa was reduced when the concentration of the charge carrier was elevated ([Ca2+]o or [Ba2+]o varied between 2 and 110 mM). Analysis of whole cell and single Ca2+ channel currents suggested that more acidic pHo values shift the voltage-dependent gating (approximately 15 mV per pH- unit) and reduce the single Ca2+ channel conductance gCa due to screening of negative surface charges. pHo effects on gCa depended on the pipette [Ba2+] ([Ba2+]p), pK*, the pH providing 50% of saturating conductance, increased with [Ba2+]p according to pK* = 2.7-2.log ([Ba2+]p) suggesting that protons and Ba2+ ions complete for a binding site that modulates gCa. The above mechanisms are discussed in respect to their importance for Ca2+ influx and vasotonus.  相似文献   

18.
Pseudomonas aeruginosa OprD is a specific porin which facilitates the uptake of basic amino acids and imipenem across the outer membrane. In this study, we examined the effects of deletions in six of the proposed eight surface loops of OprD on the in vivo and in vitro functions of this protein. Native OprD formed very small channels in planar lipid bilayers, with an average single-channel conductance in 1.0 M KCl of 20 pS. When large numbers of OprD channels were incorporated into lipid bilayer membranes, addition of increasing concentrations of imipenem to the bathing solutions resulted in a progressive blocking of the membrane conductance of KCl, indicating the presence of a specific binding site(s) for imipenem in the OprD channel. From these experiments, the concentration of imipenem value of resulting in 50% inhibition of the initial conductance was calculated as approximately 0.6 microM. In contrast, no decrease in channel conductance was observed for the OprDdeltaL2 channel upon addition of up to 2.4 microM imipenem, confirming that external loop 2 was involved in imipenem binding. Deletion of four to eight amino acids from loops 1 and 6 had no effect on antibiotic susceptibility, whereas deletion of eight amino acids from loops 5, 7, and 8 resulted in supersusceptibility to beta-lactams, quinolones, chloramphenicol, and tetracycline. Planar lipid bilayer analysis indicated that the OprDdeltaL5 channel had a 33-fold increase in single-channel conductance in 1 M KCl but had retained its imipenem binding site. The disposition of these loop regions in the interior of the OprD channel is discussed.  相似文献   

19.
The interaction of ryanodine and derivatives of ryanodine with the high affinity binding site on the ryanodine receptor (RyR) channel brings about a characteristic modification of channel function. In all cases, channel open probability increases dramatically and single-channel current amplitude is reduced. The amplitude of the ryanoid-modified conductance state is determined by structural features of the ligand. An investigation of ion handling in the ryanodine-modified conductance state has established that reduced conductance results from changes in both the affinity of the channel for permeant ions and the relative permeability of ions within the channel (Lindsay, A.R.G., A. Tinker, and A.J. Williams. 1994. J. Gen. Physiol. 104:425-447). It has been proposed that these alterations result from a reorganization of channel structure induced by the binding of the ryanoid. The experiments reported here provide direct evidence for ryanoid-induced restructuring of RyR. TEA+ is a concentration- and voltage-dependent blocker of RyR in the absence of ryanoids. We have investigated block of K+ current by TEA+ in the unmodified open state and modified conductance states of RyR induced by 21-amino-9alpha-hydroxyryanodine, 21-azido-9alpha-hydroxyryanodine, ryanodol, and 21-p-nitrobenzoylamino-9alpha-hydroxyryanodine. Analysis of the voltage dependence of block indicates that the interaction of ryanoids with RyR leads to an alteration in this parameter with an apparent relocation of the TEA+ blocking site within the voltage drop across the channel and an alteration in the affinity of the channel for the blocker. The degree of change of these parameters correlates broadly with the change in conductance of permeant cations induced by the ryanoids, indicating that modification of RyR channel structure by ryanoids is likely to underlie both phenomena.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号