首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Many taxon names in any classification will be composed of taxa that have yet to be demonstrated as monophyletic, that is, characterized by synapomorphies. Such taxa might be called aphyletic, the flotsam and jetsam in systematics, simply meaning they require taxonomic revision. The term aphyly is, however, the same as, if not identical to, Hennig's “Restkörper” and Bernardi's merophyly. None of these terms gained common usage. We outline Hennig's use of “Restkörper” and Bernardi's use of merophyly and compare it to aphyly. In our view, application of aphyly would avoid the oft made assumption that when a monophyletic group is discovered from within an already known and named taxon, then the species left behind are rendered paraphyletic. By identifying the flotsam and jetsam in systematics, we can focus on taxa in need of attention and avoid making phylogenetic faux pas with respect to their phylogenetic status.  相似文献   

2.
Transformation Series as an Ideographic Character Concept   总被引:7,自引:0,他引:7  
An ideographic concept of character is indispensable to phylogenetic inference. Hennig proposed that characters be conceptualized as “transformation series”, a proposal that is firmly grounded in evolutionary theory and consistent with the method of inferring transformation events as evidence of phylogenetic propinquity. Nevertheless, that concept is usually overlooked or rejected in favor of others based on similarity. Here we explicate Hennig's definition of character as an ideographic concept in the science of phylogenetic systematics. As transformation series, characters are historical individuals akin to species and clades. As such, the related concept of homology refers to a historical identity relation and is not equivalent to or synonymous with synapomorphy. The distinction between primary and secondary homology is dismissed on the grounds that it conflates the concept of homology with the discovery operations used to detect instances of that concept. Although concern for character dependence is generally valid, it is often misplaced, focusing on functional or developmental correlation (both of which are irrelevant in phylogenetic systematics but may be valid in other fields) instead of the historical/transformational independence relevant to phylogenetic inference. As an ideographic science concerned with concrete objects and events (i.e. individuals), intensionally and extensionally defined properties are inconsistent with the individuation of characters for phylogenetic analysis, the utility of properties being limited to communicating results and facilitating future rounds of testing.  相似文献   

3.
The study of ontogeny as an integral part of understanding the pattern of evolution dates back over 200 years, but only recently have ontogenetic data been explicitly incorporated into phylogenetic analyses. Pancrustaceans undergo radical ontogenetic changes. The spectacular upper Cambrian “Orsten” fauna preserves phosphatized fossil larvae, including putative crown‐group pancrustaceans with amazingly complete developmental sequences. The putative presence and nature of adult stages remains a source of debate, causing spurious placements in a traditional morphological analysis. We introduce a new coding method where each semaphoront (discrete larval or adult stage) is considered an operational taxonomic unit. This avoids a priori assumptions of heterochrony. Characters and their states are defined to identify changes in morphology throughout ontogeny. Phylogenetic analyses of semaphoronts produced possible relationships of each Orsten fossil to the crown‐group clade expected from morphology shared with extant larvae. Bredocaris is a member of the stem lineage of Thecostraca or (Thecostraca + Copepoda), and Yicaris and Rehbachiella are probably members of the stem lineage of Cephalocarida. These placements rely directly on comparisons between extant and fossil larval character states. The position of Phosphatocopina remains unresolved. This method may have broader applications to other phylogenetic problems which may rely on ontogenetically variable homology statements.  相似文献   

4.
The leading experts in the development of phylogenetic systematics, Walter Zimmermann and Willi Hennig, formulated their research program in opposition to (neo-) idealistic morphology as expounded by authors such as Wilhelm Troll and Adolf Naef. Idealistic morphology was synonymous with systematic morphology for Naef, who wanted it to be strictly kept separate and independent of phylogenetics. Naef conceded, however, that the natural system researched by systematic morphology is to be causally explained by the theory of descent with modification. Naef went on to compile a dictionary that would regulate the translation of the language of systematic morphology into the language of phylogenetics. The switch from idealistic morphology to phylogenetic morphology is paradigmatically exemplified in the two editions (1859, 1870) of Carl Gegenbaur's Grundzüge der vergleichenden Anatomie. This paper traces the development of phylogenetic systematics from Gegenbaur through the work of Adolf Naef to Walter Zimmermann and Willi Hennig. Hennig added to Naef's systematic morphology the dimension of time, which required an ontological replacement: Naef's natural system, a nested hierarchy of intensionally defined sets subject to the membership relation, was replaced by Hennig's phylogenetic system, an enkaptic hierarchy subject to the part-to-whole relation.  相似文献   

5.
The decline in morphological phylogenies has become a pronounced trend in contemporary systematics due to a disregard for theoretical, methodological, conceptual, and philosophical approaches. The role and meaning of morphology in phylogenetic reconstruction and classification have been undermined by the following: (i) the ambiguous delineation of morphological characters; (ii) the putative “objectivity” of molecular data; (iii) that morphology has not been included in data matrices; (iv) that morphology has been mapped onto molecular cladograms; and (v) a separation of a paradigmatic relationship among morphology, phylogeny, and classification. Historical/philosophical arguments including the synthesis of coherence (coherentism) and correspondence (foundationalism) theories—i.e. “foundherentism” as a theory of epistemic justification—provide support for a renaissance of morphology in phylogenetic systematics. In the language of systematics, coherence theory corresponds to the logical/operational congruence of character states translated into a hierarchical/relational system of homologues and monophyletic groups as natural kinds. Correspondence theory corresponds to the empirical/causal accommodation of homologues and monophyletic groups as natural kinds grounded in the concept of semaphoront, and in developmental biology, genetics, inheritance, ontogenesis, topology, and connectivity. The role and meaning of morphology are also discussed in the context of separate and combined analyses, palaeontology, natural kinds, character concepts, semaphoront, modularity, and taxonomy. Molecular systematics suffers from tension between coherence and correspondence theories, and fails to provide a pragmatic language for predicates in science and in everyday life. Finally, the renaissance of morphology is not only dependent on a scientific/philosophical perspective but also depends on political, economic, social, and educational reforms in contemporary systematics. © The Willi Hennig Society 2009.  相似文献   

6.
An outline of the development of phylogenetic thinking and methodology in German literature published between 1862 and 1942 is presented. Central European biologists and palaeontologists of the first post‐Darwinian generation of biologists holding evolutionary views were directly stimulated by Darwin. Members of the second generation, mostly born after 1850, were largely influenced also by colleagues of the first post‐Darwinian generation, mainly by Haeckel. Among them were O. Abel, V. Franz, R. Hertwig, A. Naef, L. Plate, and R. v. Wettstein. Opinions on the relationship between systematics and phylogeny differed considerably. Many authors admitted that phylogeny must be mirrored in systematics but at the same time shared Haeckel's views on classification, which permitted paraphyletic groupings. Particularly Abel and Naef took systematics several steps further, and many important elements of phylogenetic systematics were developed several decades before Hennig. Naef presented a definition of a phylogenetic group that exactly matches Hennig's definition of monophyly. He also formulated a species concept that was implicitly based on reproductive isolation. This was an important presupposition for viewing speciation as the splitting of a stem species into daughter species. However, many authors of the first half of the 20th century repeated old, but established views on phylogenetics, while others overlooked or misunderstood earlier progressive views thus causing slow development of phylogenetic systematics in Central Europe. Its development almost stopped between 1925 and 1950, because of a widespread shift towards typology and extreme idealistic morphology. During that time very few persons such as W. Zimmermann and W. Hennig assembled elements of phylogenetic systematics and combined them with their own thoughts to create a sound theory and methodology.  相似文献   

7.
Willi Hennig's (Beitr. Ent. 1960, 10, 15) Die Dipteren-Fauna von Neuseeland als systematisches und tiergeographisches Problem applied a phylogenetic approach to examine the distributional patterns exhibited by the Diptera of New Zealand. Hennig showed how phylogenetic trees may be used to infer dispersal, based on the progression and deviation rules, and also discussed the existence of vicariance patterns. The most important author who applied Hennig's phylogenetic biogeography was Lars Brundin, when analysing the phylogenetic relationships of two taxa of Chironomidae (Diptera) and using them to examine the biogeographic relationships of Australia, New Zealand, South America and South Africa. The relevance of Brundin's contribution was noted by several authors, as it began the cladistic or vicariance approach to biogeography, that implies the discovery of vicariance events shared by different monophyletic groups. Both phylogenetic and cladistic biogeography have a place in contemporary biogeography, the former for analysing taxon biogeography and the latter when addressing Earth or biota biogeography. The recent use of the term “phylogenetic biogeography” to refer to a posteriori methods of cladistic biogeography is erroneous and should be avoided.  相似文献   

8.
In his “Grundzüge einer Theorie der phylogenetischen Systematik”, Hennig (1950 ) cited three philosophers: the leading empiricist Rudolf Carnap, the conventionalist Hugo Dingler, and the somewhat more obscure empiricist Theodor Ziehen. David Hull characterized Hennig's “Grundzüge” as one long argument against idealistic morphology. It will here be argued that Hennig attacked idealistic morphology (synonymous with “systematic” morphology) for its mode of concept formation. Building on Carnap and Ziehen, who both looked back on Ernst Cassirer, Hennig argued that the “generic”, “thing” or “class” concept of traditional nomothetic science must be replaced with Cassirer's “relation concept.” According to Hennig, such “emancipation” of systematics from the Aristotelian “species” concept would also allow transcendence from the distinction of idiographic from nomothetic sciences, thus preserving the unity of science. However, the establishment of relations in the construction of a system of order presupposes entities that can be, or are, related. Relations presuppose relata, which in modern systematics are best conceptualized (at least at the supraspecific level) not as Aristotelian classes, nor as individuals as was argued by Hennig and Ziehen, but as tokens of natural kinds. © The Willi Hennig Society 2006.  相似文献   

9.
10.
11.
This paper is a critical comment on a recent article by Lieberman. 1 We question his opinion that DNA is a better data source for phylogenetic reconstructions than bone and discuss his “problems and potential solutions” regarding the homology concept. We conclude that phylogenetic systematics requires a phylogenetic homology concept, and that Lieberman's “solutions,” though useful terms, should not be designated as homology.  相似文献   

12.
The role of scientific theories in classifying plants and animals is traced from Hennig's phylogenetics and the evolutionary taxonomy of Simpson and Mayr, through numerical phenetics, to present-day cladistics. Hennig limited biological classification to sister groups so that this one relation can be expressed unambiguously in classifications. Simpson and Mayr were willing to sacrifice precision in representation in order to include additional features of evolution in the construction of classifications. In order to make classifications more objective, precise and quantitative, numerical pheneticists limited themselves to representing degrees of phenetic similarity. Finally, present-day cladists can be separated into phylogenetic cladists, who retain much of Hennig's theory of classification, and pattern cladists, who have stripped Hennig's system down to its bare essentials.  相似文献   

13.
《Palaeoworld》2016,25(1):132-134
Chen et al. (2014) described a suite of one-celled, Parapandorina-stage, Megaclonophycus-stage (some with dyads and tetrads), and matryoshka-stage fossils from the Doushantuo Formation, and interpreted them as representing a sequence of ontogenetic stages of the animal embryo-like fossil Megasphaera. Tang (2015) argues that the matryoshkas might have been parasites or symbionts, rather than developmental products of dyads and tetrads in Megaclonophycus-stage fossils. Assessing Tang's (2015) arguments against available evidence, we conclude that the matryoshkas likely represent an ontogenetic stage of Megasphaera. As such, they have the potential to illuminate the developmental biology, life cycle, and phylogenetic affinity of the enigmatic fossil Megasphaera.  相似文献   

14.
Rejecting "the given" in systematics   总被引:3,自引:1,他引:2  
How morphology and systematics come together through morphological analysis, homology hypotheses and phylogenetic analysis is a topic of continuing debate. Some contemporary approaches reject biological evaluation of morphological characters and fall back on an atheoretical and putatively objective (but, in fact, phenetic) approach that defers to the test of congruence for homology assessment. We note persistent trends toward an uncritical empiricism (where evidence is believed to be immediately “given” in putatively theory‐free observation) and instrumentalism (where hypotheses of primary homology become mere instruments with little or no empirical foundation for choosing among competing phylogenetic hypotheses). We suggest that this situation is partly a consequence of the fact that the test of congruence and the related concept of total evidence have been inappropriately tied to a Popperian philosophy in modern systematics. Total evidence is a classical principle of inductive inference and does not imply a deductive test of homology. The test of congruence by itself is based philosophically on a coherence theory of truth (coherentism in epistemology), which is unconcerned with empirical foundation. We therefore argue that coherence of character statements (congruence of characters) is a necessary, but not a sufficient, condition to support or refute hypotheses of homology or phylogenetic relationship. There should be at least some causal grounding for homology hypotheses beyond mere congruence. Such causal grounding may be achieved, for example, through empirical investigations of comparative anatomy, developmental biology, functional morphology and secondary structure. © The Willi Hennig Society 2006.  相似文献   

15.
Based largely on homoplastic characters of external morphology, the current systematics of the tribe Onthophagini and allied dung beetle lineages is unstable, contradictory, and thus inefficient. A number of recently proposed molecular phylogenies conflict strongly with each other and with formal classification, and none of them provides new tools for the improvement of dung beetle systematics. We explored the source of these inconsistencies by performing an independent, morphology‐based phylogenetic analysis of the “Serrophorus complex”, one of the most systematically confusing knots among the onthophagines, that involves 52 species from various genera of Onthophagini and allied tribes. The phylogenetic pattern revealed conflicts with existing classifications and with most of the earlier molecular phylogenies. However, it was largely congruent with the molecular phylogeny (Evolution 2005, 59 , 1060), using the largest gene sampling thus far. All current competing phylogenetic hypotheses were evaluated against each other, and the degree of their biogeographic plausibility was used as an additional evaluative criterion. Of the 91 morphological characters involved in our analyses, traits belonging to the endophallic sclerites of the aedeagus had a very strong phylogenetic signal. Terminology of these endophallic characters was established and their morphology was studied in detail, illustrated, and presented as a tool for further practical use. The enormous variety of shapes of the lamella copulatrix within the Onthophagini and allies present a methodological problem in character coding for phylogenetic analyses. Based on the performance of alternative coding approaches, it is argued that a seemingly less informative absence/presence coding scheme would be a better choice. The phylogenetic structure of the Serrophorus complex has been largely resolved, and some taxonomic changes improving its systematics are recommended.
© The Willi Hennig Society 2011.  相似文献   

16.
We performed the first combined‐data phylogenetic analysis of ictalurids including most living and fossil species. We sampled 56 extant species and 16 fossil species representing outgroups, the seven living genera, and the extinct genus ?Astephus long thought to be an ictalurid. In total, 209 morphological characters were curated and illustrated in MorphoBank from published and original work, and standardized using reductive coding. Molecular sequences harvested from GenBank for one nuclear and four mitochondrial genes were combined with the morphological data for total evidence analysis. Parsimony analysis recovers a crown clade Ictaluridae composed of seven living genera and numerous extinct species. The oldest ictalurid fossils are the Late Eocene members of Ameiurus and Ictalurus. The fossil clade ?Astephus placed outside of Ictaluridae and not as its sister taxon. Previous morphological phylogenetic studies of Ictaluridae hypothesized convergent evolution of troglobitic features among the subterranean species. In contrast, we found morphological evidence to support a single clade of the four troglobitic species, the sister taxon of all ictalurids. This result holds whether fossils are included or not. Some previously published clock‐based age estimates closely approximate our minimum ages of clades.  相似文献   

17.
Aim To develop an analytical method for accurately reconstructing the biogeographic events associated with adaptive radiation in a system of insular habitats. Location An idealized, two-dimensional model system of insular habitats is based on the altitudinally stratified vegetation zones on the island-like mountains of eastern Africa. Methods The model system is treated as a two-dimensional array of insular habitats, and adaptive radiation is treated as a ‘space-filling’ process according to six premises based on uniformitarian principles. Previous approaches to this class of problems have used (1) Hennig's progression rule, (2) optimization of biogeographic character states, and (3) reasoned argumentation with an intuitive synthesis of information. The strengths and limitations of these previous approaches are evaluated. Results A closed analytical method is presented that accurately reconstructs biogeographic events. This methodological approach integrates atomized information back up to the appropriate level of biological organization and has general applicability to phylogenetic analysis. Main conclusions In a truly evolutionary approach to phylogenetic systematics and biogeography, the initial analysis of the pattern of descent should be complemented with a subsequent analysis of the pattern of modification. The method presented here offers one approach to analysing the pattern of modification, which in this case constitutes biogeographic movement.  相似文献   

18.
The phylogeny of the living and fossil Sphenisciformes (penguins)   总被引:4,自引:1,他引:3  
We present the first phylogenetic analysis of the Sphenisciformes that extensively samples fossil taxa. Combined analysis of 181 morphological characters and sequence fragments from mitochondrial and nuclear genes (12S, 16S, COI, cytochrome b, RAG‐1) yields a largely resolved tree. Two species of the New Zealand Waimanu form a trichotomy with all other penguins in our result. The much discussed giant penguins Anthropornis and Pachydyptes are placed in two clades near the base of the tree. Stratigraphic and phylogenetic evidence suggest that some lineages of penguins attained very large body size rapidly and early in the clade's evolutionary history. The only fossil taxa that fall inside the crown clade Spheniscidae are fossil species assigned to the genus Spheniscus. Thus, extant penguin diversity is more accurately viewed as the product of a successful radiation of derived taxa than as an assemblage of survivors belonging to numerous lineages. The success of the Spheniscidae may be due to novel feeding adaptations and a more derived flipper apparatus. We offer a biogeographical scenario for penguins that incorporates fossil distributions and paleogeographic reconstructions of the Southern continent's positions. Our results do not support an expansion of the Spheniscidae from a cooling Continental Antarctica, but instead suggest those species that currently breed in that area are the descendants of colonizers from the Subantarctic. Many important divergence events in the clade Spheniscidae can instead be explained by dispersal along the paths of major ocean currents and the emergence of new islands due to tectonic events. © The Willi Hennig Society 2006.  相似文献   

19.
The last decade has witnessed a resurgence in the study of the evolution of plant development, combining investigations in systematics, developmental morphology, molecular developmental genetics, and molecular evolution. The integration of phylogenetic studies, structural analyses of fossil and extant taxa, and molecular developmental genetic information allows the formulation of explicit and testable hypotheses for the evolution of morphological characters. These comprehensive approaches provide opportunities to dissect the evolution of major developmental transitions among land plants, including those associated with apical meristems, the origins of the root/shoot dichotomy, diversification of leaves, and origin and subsequent modification of flower structure. The evolution of these major developmental innovations is discussed within both phylogenetic and molecular genetic contexts. We conclude that it is the combination of these approaches that will lead to the greatest understanding of the evolution of plant development.  相似文献   

20.
Cuckoo wasps (Hymenoptera: Chrysididae) are a species‐rich family of obligate brood parasites (i.e. parasitoids and kleptoparasites) whose hosts range from sawflies, wasps and bees, to walking sticks and moths. Their brood parasitic lifestyle has led to the evolution of fascinating adaptations, including chemical mimicry of host odours by some species. Long‐term nomenclatural stability of the higher taxonomic units (e.g. genera, tribes, and subfamilies) in this family and a thorough understanding of the family's evolutionary history critically depend on a robust phylogeny of cuckoo wasps. Here we present the results from phylogenetically analysing ten nuclear‐encoded genes and one mitochondrial gene, all protein‐coding, in a total of 186 different species of cuckoo wasps representing most major cuckoo wasp lineages. The compiled data matrix comprised 4946 coding nucleotide sites and was phylogenetically analysed using classical maximum‐likelihood and Bayesian inference methods. The results of our phylogenetic analyses are mostly consistent with earlier ideas on the phylogenetic relationships of the cuckoo wasps' subfamilies and tribes, but cast doubts on the hitherto hypothesized phylogenetic position of the subfamily Amiseginae. However, the molecular data are not fully conclusive in this respect due to low branch support values at deep nodes. In contrast, our phylogenetic estimates clearly indicate that the current systematics of cuckoo wasps at the genus level is artificial. Several of the currently recognized genera are para‐ or polyphyletic (e.g. Cephaloparnops, Chrysis, Chrysura, Euchroeus, Hedychridium, Praestochrysis, Pseudochrysis, Spintharina, and Spinolia). At the same time, our data support the validity of the genus Colpopyga, previously synonymized with Hedychridium. We discuss possible solutions for how to resolve the current shortcomings in the systematics of cuckoo wasp genera and decided to grant Prospinolia the status of a valid genus (Prospinolia stat.n. ) and transferring Spinolia theresae [du Buysson 1900] from Spinolia to Prospinolia (Prospinolia theresae stat.restit. ). We discuss the implications of our phylogenetic inferences for understanding the evolution of host associations in this group. The results of our study not only shed new light on the evolutionary history of cuckoo wasps, but also set the basis for future phylogenomic investigations on this captivating group of wasps by guiding taxonomic sampling efforts and the design of probes for target DNA enrichment approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号