首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Heparin has been the drug of choice in clinical pre-surgical and post-surgical prophylaxis of thrombotic events. However, because of its side-effects, such as bleeding and other disadvantages (i.e. chemical inhomogeneity and variability of its physiological activities), alternatives to heparin are an important field of research. A necessary procedure in the development of new drugs is the evaluation of structure-activity relationships. Genuine neutral polysaccharides were chemically modified and examined for their anticoagulant activities. The linear β-1,3-glucan curdlan, an easily available bacterial polysaccharide, served as the basic polymer. It could be established that the anticoagulant activity was dependent on the degree of sulfation and the molecular weight. For heparin, the sulfation pattern, i.e. the actual location of the sulfate groups along the heparin chain, was of importance in addition to the degree of sulfation. Therefore, we investigated whether there was also a relationship between the substitution pattern of the curdlan sulfates and their anticoagulant activity. For determination of the substitution pattern of the sulfated polysaccharides, a method was developed that is based on synthesis of the partially alkylated alditol acetates of the polymer and examination of these derivatives using combined gas chromatographymass spectrometry. In addition to the analytical data, the structure-activity relationship of anticoagulative curdlan sulfates is presented.  相似文献   

2.
The following pectins were sulfated: bergenan BC (the pectin of Bergenia crassifolia L), lemnan LM (the pectin of Lemna minor L), and galacturonan as a backbone of pectins. Pyridine monomethyl sulfate, pyridine sulfotrioxide, and chlorosulfonic acid were used as reagents for sulfation. Chlorosulfonic acid proved to be the optimal reagent for sulfation of galacturonan and other pectins. Galacturonan and pectin derivatives with different degrees of sulfation were synthesized and their anticoagulant activities were shown to depend on the quantity of sulfate groups in the pectin macromolecules.  相似文献   

3.
A galactoglucomannan (GGM), isolated from the lichen Cladonia ibitipocae, consisted of a (1-->6)-linked main chain of alpha-mannopyranose units, substituted by alpha- and beta-D-galacto (alpha- and beta-D-Galp)-, beta-D-gluco (beta-D-Glcp)- and alpha-D-mannopyranosyl (alpha-D-Manp) groups, and was sulfated giving a sulfated polysaccharide (GGM-SO4) with 42.2% sulfate corresponding to a degree of substitution of 1.29. NMR studies indicated that after sulfation, the OH-6 groups of galactopyranosyl and mannopyranosyl units were preferentially substituted. GGM-SO4 was investigated in terms of its in vitro anticoagulant and in vivo antithrombotic properties. Those of the former were evaluated by its activated partial thromboplastin (APTT) and thrombin time (TT), using pooled normal human plasma, and compared with that of 140 USP units mg(-1) for a porcine intestinal mucosa heparin. Anticoagulant activity was detected in GGM-SO4, but not in GGM. The in vivo antithrombotic properties of GGM-SO4 were evaluated using a stasis thrombosis model in Wistar rats, intravenous administration of 2 mg kg(-1) body weight totally inhibiting thrombus formation. It caused dose-dependent increases in tail transection bleeding time. The results obtained showed that this sulfated polysaccharides is a promising anticoagulant and antithrombotic agent.  相似文献   

4.
During prion diseases the normal prion protein PrP(C) is refolded into an abnormal conformer PrP(Sc). We have studied the PrP(Sc) inhibiting activity of a library of synthetic heparan mimetic (HM) biopolymers. HMs are chemically derived dextrans obtained by successive substitutions with carboxymethyl, benzylamide, and sulfate groups on glucose residues. Some HMs eliminated PrP(Sc) from prion-infected cells after a 5 day course at 100 ng/ml and were 15 x potent than pentosan sulfate in this system. The anti-PrP(Sc) activity of HMs correlated with the degree of sulfation but was increased by benzylamidation. HMs did not reduce the synthesis of PrP(C) nor its attachment to lipid rafts, but instead blocked its conversion into PrP(Sc). The anti-PrP(Sc) HMs also prevented the uptake of prion rods by cultured cells. HMs may thus block the interaction of PrP(Sc) with a putative cellular receptor, possibly heparan sulfate. HMs provide an attractive chemical approach for the synthesis of TSE therapeutic and prophylactic reagents.  相似文献   

5.
The sulfation of dermatan sulfate by SO3-trimethylamine in N,N-dimethylformamide led to substitution initially at HO-6 of residues of 2-acetamido-2-deoxy-beta-D-galactopyranosyl 4-sulfate (1), to produce the 4,6-disulfate (6). When this step reached a level of greater than 50%, sulfation occurred with equal facility at HO-2 and HO-3 of residues of alpha-L-idopyranosyluronic acid (2), giving rise to a mixture of 2-,3-, and 2,3-disulfates. An analogous substitution pattern was observed for HO-2 and -3 of a simpler idopyranose unit, in the sulfation of methyl 4,6-O-benzylidene-alpha-D-idopyranoside (12). This lack of regioselectivity in the reaction of 2 (and 12) contrasts markedly with the high affinity of the reagent for HO-3 of residues of alpha-L-idopyranosyluronic acid present in a modified form of heparin. It is attributed to a difference between the two polymers in the relative orientation of their neighboring amino sugar residues, whereby there is an unobstructed access of the reagent in one instance, and hindrance of HO-2 selectively in the other. Enzymolysis by chondroitinase ABC was found to yield unsaturated disaccharide containing residues of 4,6-disulfate, as well as larger fragments containing unsaturated glycosyl groups derived from L-idopyranosyluronic acid 2-sulfate, evidence of a relatively broad enzyme specificity. The presence of extra sulfate groups in dermatan sulfate did not enhance its weak antithrombotic activity, as measured by anti Xa assay, in disagreement with earlier reports.  相似文献   

6.
Preparation and anticoagulation activity of sodium cellulose sulfate   总被引:1,自引:0,他引:1  
Semi-synthesis of cellulose sulfate sodium (Na-MCS) was carried out by sulfation of microcrystalline cellulose (MCC) with chlorosulfonic acid-dimethylformamide complex as sulfating agent. As shown by FT-IR, NMR spectroscopy, and elemental analysis, the sulfation occurred mainly at C6, partially at C2, and no substitution at C3. The substitution degree ranged from 1.10 to 1.70 and the average molecular weight is between 1.1 and 3.5 x 10(4)Da. The anticoagulant efficacy and its possible mechanism were investigated using in vitro, in vivo coagulation assays and amidolytic tests in comparison with heparin. Results indicated that Na-MCS exhibited higher anticoagulation activity based on activated partial thromboplastin time (APTT) assay and prolonged the thrombin time (TT) to a lesser extent than heparin. No effect was detected on the prothrombin time (PT). Subcutaneous administration of Na-MCS to mice increased the clotting time (CT) in a moderate dose-dependent manner with a longer duration. Na-MCS exhibited anticoagulation activity mainly by accelerating the inhibition of antithrombin III (AT-III) on coagulation factors FIIa and FXa in plasma.  相似文献   

7.
Heparin was previously reported to potentiate the mitogenic activity of endothelial cell mitogens in a crude extract of bovine hypothalami (Thornton, S. C., Mueller, S. N., and Levine, E. M. (1983) Science 222, 623-625). We and others (Gospodarowicz, D., and Cheng, J. (1986) J. Cell. Physiol. 128, 475-484) have reported that the growth stimulatory effects of acidic fibroblast growth factor (aFGF) are potentiated in a similar manner. We have used these observations as the basis of an assay to characterize the importance of size, sulfation, and anticoagulant activity of heparin in mediating this effect. Partial nitrous acid depolymerization of heparin from porcine intestinal mucosa resulted in a mixture of heparin fragments, containing oligosaccharides ranging from disaccharides to polysaccharides of about 40 monosaccharides in length. This mixture was fractionated by ion exchange chromatography and gel permeation chromatography to obtain size-homogeneous oligosaccharides with different degrees of sulfation. Assay of these heparin-derived saccharides in the presence of a suboptimal concentration of aFGF revealed that a minimum chain length and a certain degree of sulfation is required in order to potentiate the action of aFGF. Low sulfate oligosaccharides (4-16 units) were unable to potentiate aFGF, whereas medium sulfate fractions of octadecasaccharides and larger were able to moderately potentiate aFGF. The potentiation of aFGF by the high sulfate fraction correlated with the saccharide size: 12 or more monosaccharide units were necessary to achieve potentiation equivalent to whole heparin, octa- and decasaccharides were mildly stimulatory, and hexasaccharides were without effect. In the absence of aFGF, intact heparin as well as all the oligosaccharides examined, inhibited the proliferation of capillary endothelial cells to approximately the same degree, between 20 and 50% inhibition. When a tetradecasaccharide was separated into a binding and a nonbinding fraction on matrix-bound antithrombin III, no difference was seen for these fractions in the endothelial cell proliferation assay. These results indicate that both size and sulfation of a heparin-derived oligosaccharide contribute to its ability to interact with aFGF and/or endothelial cells and that this interaction is independent of anticoagulant activity. In addition, our findings suggest that the inhibitory and potentiating effects of heparin on capillary endothelial cells have different structural requirements.  相似文献   

8.
目的:对昆布多糖进行不同硫取代度的硫酸酯化修饰,并对其产物的硫酸基含量、糖含量与分子量进行检测,为研究不同硫取代度昆布多糖硫酸酯的生物活性奠定物质基础。方法:采用氯磺酸-吡啶法对昆布多糖进行硫酸化修饰,通过改变硫酸化修饰条件,来制取不同硫酸基取代度的昆布多糖硫酸酯;利用盐酸水解-硫酸钡比浊法测定昆布多糖硫酸酯的硫酸基含量,并通过公式求得其硫取代度;用苯酚-硫酸法测定昆布多糖硫酸酯的多糖含量,并使用HPGPC法测定其分子量。结果:两种不同硫取代度昆布多糖硫酸酯的硫酸基含量分别为37.8%、45.92%,取代度分别为1.07、1.51,糖含量分别为44.52%、37.19%,分子量分别为13000、16000。结论:利用氯磺酸-吡啶法对昆布多糖进行硫酸酯化修饰,该方法可以获取不同取代度产物,酯化率高。  相似文献   

9.
Acidic and basic fibroblast growth factors (aFGF and bFGF) belong to a family of structurally related polypeptides characterized by a high affinity for heparin. a and bFGF display mitogenic activity for many cell types. Biological activity is strongly potentiated by heparin which stabilizes their molecular conformation by preventing physicochemical or enzymatic degradation. In our previous study we have shown that a water-soluble derivatized dextran named DDE, containing 82.2% methyl carboxylic acid groups, 6.1% benzylamide, and 5.6% sulfonate with a specific anticoagulant activity equivalent to heparin of 0.5 IU/mg could potentiate the mitogenic activity of aFGF on CCL39 cells. Optimal concentrations for maximal potentiation of 400 micrograms/ml and 20 micrograms/ml were obtained respectively for DDE and heparin. In the present report, we have uncovered the fact that several carboxymethyl benzylamide sulfonate dextrans differing in degree and positioning of the substituent groups can mimic heparin in regard to the protection, stabilization, and potentiating effects with aFGF or bFGF. Our data establishes that the dextran derivatives studied can act as potentiating agents for FGFs. Native dextran (DDA) had no effect. Dextran derivatives can also protect aFGF and bFGF from heat as well as from pH denaturation, and against trypsic and chymotrypsic degradation. The dextran derivative DDI (82% methylcarboxylic acid, 23% benzylamide, 13% sulfonate) was studied in greater detail and exhibited a greater protection for bFGF and a lesser protecting effect for aFGF than heparin. Derivatized dextrans which have very weak anticoagulant activity are of great interest as alternatives to heparin for use as stabilizers, potentiators, protectants, and slow-release matrices for FGFs in pharmaceutical formulations.  相似文献   

10.
A series of heparin-like 6-carboxylchitin derivatives with different N-acetyl group and sulfate group contents were prepared. Their structures were characterized by element analysis, FT-IR, (13)C NMR, and gel permeation chromatography. Their anticoagulant activity in vitro was investigated for human plasma with respect to activated partial thromboplastin time (APTT). The results showed all 6-carboxylchitin derivatives prolonged APTT within the scope of studied degree of sulfation (0.28-1.03) and Mws (4.3-13.7 kDa). Their anticoagulant activity strongly depended on their structures. 3,6-O-sulfated group promoted the anticoagulant activity. Only incorporation of N-sulfated group into deacetylated 6-carboxylchitin could not improve the anticoagulant activity. But, N-sulfated group and O-sulfated group had the synergistic action, and N-sulfated group could promote the anticoagulant activity for the N,O-sulfated chitin derivatives. In addition, acetyl group took a role in the anticoagulant activity, too.  相似文献   

11.
《Process Biochemistry》2014,49(8):1352-1361
In this study, we isolated two fucosylated polysaccharide sulfates (ACP and HOP) from sea cucumber Acaudina molpadioidea and Holothuria nobilis, with an average molecular weight of 90.8 and 135.8 kDa, respectively. We investigated and compared their anticoagulant activities through anticoagulant assay. Our data showed that both polysaccharides possessed good anticoagulant activity, but HOP's activity was higher than that of ACP. Due to the different anticoagulant activities of ACP and HOP, we compared the preliminary structural characterizations of these two sulfated polysaccharides, and found that both ACP and HOP consisted of β-d-glucuronic acid, β-d-N-acetyl-galactosamine, α-l-fucose and sulfate groups. ACP and HOP had almost identical ratios of glucuronic acid, N-acetyl-galactosamine and fucose. However, the sulfate contents and sulfation patterns of fucose residues of ACP and HOP were obviously different. There were 4-O-sulfated fucose, 3,4-O-disulfated fucose and 2,4-O-disulfated fucose in ACP, but only 3-O-sulfated fucose and 2,4-O-disulfated fucose were present in HOP. Therefore, their distinct anticoagulant activities might be due to the different sulfate contents and sulfation patterns of their fucose residues.  相似文献   

12.
The interaction of basic FGF (bFGF) with heparin, heparan sulfate and related sugars can potentiate or antagonize bFGF activity, depending on the size of the saccharide used. Oligosaccharides based on heparin structures, as small as six sugar residues, have been demonstrated to bind to bFGF and block its activity, while larger structures (> 10 sugar residues) tend to potentiate bFGF. In this study we have synthesized a series of compounds designed to test the requirements of size and sulfation for binding of oligosaccharides to bFGF. These oligosaccharides are not derived from heparin, but rather, are linear chains of glucose linked α1–4 (malto-oligosaccharides) that have been chemically sulfated. In addition to bFGF binding, these compounds were tested for their ability to block basic functions of endothelial cells that are known to be mediated, at least in part, by bFGF. We report that the ability of sulfated malto-oligosaccharides to block binding of bFGF to heparan sulfate was dependent on the size (at least a tetrasaccharide is required), and the degree of sulfation. The activity profile in the bFGF ELISA closely correlated with the ability of these compounds to block REEC or HMVEC tube formation on Matrigel. There was a similar relationship of size and sulfation to the ability of the sulfated malto-oligosaccharides to inhibit endothelial cell growth for most human and rat EC types tested. The single exception was REEC cell growth. One isolate of these cells was stimulated by sulfated malto-oligosaccharides rather than inhibited by them, while a second isolate was neither stimulated nor inhibited. This stimulation showed no correlation with inhibition of bFGF binding in the ELISA assay, suggesting that growth of this cell type was probably not dependent on bFGF. Compounds derived from this series of sulfated, malto-oligosaccharides have the potential to function as bFGF antagonists, are relatively easy to produce, and possess relatively low anticoagulant properties. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The minimum concentrations of heparin, dermatan sulfate, hirudin, and D-Phe-Pro-ArgCH2Cl required to delay the onset of prothrombin activation in contact-activated plasma also prolong the lag phases associated with both factor X and factor V activation. Heparin and dermatan sulfate prolong the lag phases associated with the activation of the three proteins by catalyzing the inhibition of endogenously generated thrombin. Thrombin usually activates factor V and factor VIII during coagulation. The smallest fragment of heparin able to catalyze thrombin inhibition by antithrombin III is an octadecasaccharide with high affinity for antithrombin III. In contrast, a dermatan sulfate hexasaccharide with high affinity for heparin cofactor II can catalyze thrombin inhibition by heparin cofactor II. A highly sulfated bis(lactobionic acid amide), LW10082 (Mr 2288), which catalyzes thrombin inhibition by heparin cofactor II and has both antithrombotic and anticoagulant activities, has been synthesized. In this study, we determined how the minimum concentration of LW10082 required to delay the onset of intrinsic prothrombin activation achieved this effect. We demonstrate that, like heparin and dermatan sulfate, LW10082 delays the onset of intrinsic prothrombin activation by prolonging the lag phase associated with both factor X and factor V activation. In addition, LW10082 is approximately 25% as effective as heparin and 10 times as effective as dermatan sulfate in its ability to delay the onset of prothrombin activation. The strong anticoagulant action of LW10082 is consistent with previous reports which show that the degree of sulfation is an important parameter for the catalytic effectiveness of sulfated polysaccharides on thrombin inhibition.  相似文献   

14.
Incubation of microsomal fractions with labelled 3'-phosphoadenylyl sulfate results in incorporation of [35S]sulfate into endogenous glycosaminoglycans. Specific radioactivity observed incorporated into heparan sulfate chains is 10-fold greater than that incorporated into chondro?tin sulfate chains. This is in agreement with the results obtained for glycosylation of glycosaminoglycans in arterial wall membrane fractions. Sulfation of heparan sulfate was studied since it contains N- and O-sulfate groups in contrast with the other sulfated glycosaminoglycans which contain only O-sulfate groups. Sulfation of heparan sulfate occurs rapidly, since sulfate incorporation is detected after exposure for only 0.5 min. Heparan sulfate was identified on the basis of its resistance to hyaluronidase and chondro?tin ABC lyase, its susceptibility to heparitinase, its sensitivity to nitrous acid and the presence of glucosamine as the only hexosamine. The chemical composition of the purified heparan sulfate fractions provides evidence for the high degree of sulfation of its chains. Studies into the distribution of sulfate residues on heparan sulfate at different times of sulfation indicate that N-sulfate groups are not randomly introduced into the polymer. The relationship between the processes of N- and O-sulfation was studied. The present results demonstrate that preferential N-sulfation is obtained for incorporation of labelled precursor over a short period, the O-sulfation occurring on previously N-sulfated heparan sulfate.  相似文献   

15.
Thermal depolymerization of alginate in the solid state   总被引:2,自引:0,他引:2  
A new method of introduction carboxyl groups to chitosan sulfate by the acylation reaction between hydroxyethyl chitosan sulfates and butane dioic anhydride in homogeneous solution was used to obtain carboxybutyrylated hydroxyethyl chitosan sulfates. The structures of the derivatives were characterized by element analysis, FT-IR, 13C-NMR, and gel permeation chromatography. The content and position of the carboxyl groups could be controlled favorably. Their anticoagulant activity was determined for human plasma with respect to activated partial thromboplastin time (APTT), thrombin time (TT), and prothombin time (PT). The introducing of carboxyl groups to amino groups greatly prolonged the APTT and TT. The best result occurred when the degree of substitution of the carboxyl groups was about 0.4/unit that prolonged APTT and TT with about 5 and 1.5 times compared to that of the uncarboxylated hydroxyethyl chitosan sulfates; another conclusion is that introducing of carboxyl groups into N,O-position gave better results than that just into N-positions. Low S% chitosan sulfate and 6-O-desulfated chitosan sulfate showed little anticoagulant activity but their N,O-carboxybutyrylated derivatives (0.6/unit ds) showed increased APTT or TT, while their N-carboxybutyrylated derivatives (0.6/unit ds) gave no improvement. Generally, the introducing of carboxyl groups could not increase PT in spite of the position introduced.  相似文献   

16.
N-(Carboxymethyl)chitosan was subjected to sulfation in a mixture of concentrated sulfuric acid (oleum) and N,N-dimethylformamide, under anhydrous conditions. The resulting product contained 11% of sulfur and degree of substitution: N-acetyl, 42%; N-carboxymethyl, 58%; and sulfate, 100%. Sonication of the sulfated N-(carboxymethyl)chitosan gave two main fractions whose molecular weights were 39,000 and 80,000. In human blood, complexes of sulfated N-(carboxymethyl) chitosan and antithrombin inhibited both thrombin and factor Xa, and produced neither hemolysis nor alterations in erythrocytes and lymphocytes. Sulfated N-(carboxymethyl)chitosan is therefore proposed as a blood anticoagulant.  相似文献   

17.
We have characterized the importance of size, sulfation, and anticoagulant activity of heparin in release of basic fibroblast growth factor (bFGF) from the subendothelial extracellular matrix (ECM) and the luminal surface of the vascular endothelium. For this purpose, 125I-bFGF was first incubated with ECM and confluent endothelial cell cultures, or administered as a bolus into the blood of rats, the immobilized 125I-bFGF was then subjected to release by various chemically modified species of heparin and size-homogeneous oligosaccharides derived from depolymerized heparin. Both totally desulfated and N-desulfated heparin failed to release the ECM-bound bFGF. Likewise, substitution of N-sulfate groups of heparin and low molecular weight heparin (fragmin) by acetyl or hexanoyl residues resulted in an almost complete inhibition of bFGF release by these polysaccharides. The presence of O-sulfate groups in heparin increased but was not critical for release of ECM-bound bFGF. Similar structural requirements were identified for release of 125I-bFGF bound to low-affinity sites on the surface of vascular endothelial cells. Oligosaccharides derived from depolymerized heparin and containing as little as 8-10 sugar units were, on a weight basis, equivalent to whole heparin in their ability to release bFGF from ECM. Low-sulfate oligosaccharides were less effective releasers of bFGF as compared to medium- and high-sulfate fractions of the same size oligosaccharides. Heparin fractions with high and low affinity to antithrombin III exhibited a similar high bFGF-releasing activity despite a 200-fold difference in their anticoagulant activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In order to develop a promising substitute for heparin, N-succinyl chitosan (NSC) was chemically modified by sulfating agent N(SO(3)Na)(3), which were synthesized with sodium bisulfite and sodium nitrite in aqueous solution. The N-succinyl chitosan sulfates (NSCS) products were characterized by infrared spectroscopy (FT-IR) and (13)C NMR. The degree of substitution (DS) of NSCS depended on the ratio of sulfating agent to N-succinyl chitosan, reaction temperature, reaction time and pH of sulfation agent. N-succinyl chitosan sulfates with DS of 1.97 were obtained under optimal conditions. The in vitro coagulation assay of NSCS was determined by activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) assays. The results showed that NSCS obviously prolonged APTT. The anticoagulant activity strongly depended on DS, molecular weight (M(w)) and concentration of NSCS. The anticoagulant activity of NSCS promoted with the increase of DS and concentration, and NSCS exhibited the best anticoagulant activity with the M(w) of 1.37×10(4).  相似文献   

19.
Previous methods for the sulfation of cellulose have a number of disadvantages among which excessive degradation and incomplete substitution are the most common. These disadvantages are overcome if a complex of sulfur trioxide with a neutral, highly polar compound, such as N,N-dimethylformamide, is used as the sulfating agent. For the sulfation of cellulose with this complex, any grade or type of cellulose is suitable. The resulting products usually have degrees of substitution greater than 2. The viscosities of their aqueous solutions are relatively high, indicating that degradation is minor. Two of the most interesting properties of this relatively undegraded cellulose sulfate are its reactivity with proteins and the gelation of its aqueous solutions to form thermoreversible gels in the presence of potassium, rubidium, or cesium ions. The properties are surprisingly similar to those of carrageenan, a polysaccharide sulfate occurring naturally in a number of red marine algae.  相似文献   

20.
Two 3'-phosphoadenylylsulfate:keratan sulfate sulfotransferases were purified 600-fold and 340-fold, respectively, from isolated bovine cornea cells. Sulfotransferase I exhibited an apparent Mr = 220,000, whereas an Mr = 140,000 was calculated for sulfotransferase II. The final preparations were both devoid of chondroitin sulfate sulfotransferase activity. The position of sulfation was determined by proton nuclear magnetic resonance spectroscopy. Sixty per cent of the sulfate ester groups formed by sulfotransferase I were linked to the C-6 atom of galactosyl residues, the other ones to the C-6 atom of N-acetylglucosamine. Sulfotransferase II showed a different specificity: 23% of the newly formed sulfate ester groups were on galactosyl and 77% on N-acetylglucosaminyl residues. Both sulfotransferase preparations acted in a cooperative manner. In the presence of both sulfotransferases, the incorporation of [35S]sulfate into keratan sulfate was up to 75% higher than could be expected from the sum of individual activities. From the specific radioactivities of the oligosaccharides produced by digestion with endo-beta-galactosidase, it was also concluded that both enzyme species reacted best with keratan sulfate segments exhibiting a relatively high degree of sulfation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号