首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed sugars from tropical maize stalk juice were used to carry out butanol fermentation with Clostridium beijerinckii NCIMB 8052. Batch experiments employing central composite design (CCD) and response surface methodology (RSM) optimization were performed to evaluate effects of three factors, i.e. pH, initial total sugar concentration, and agitation rate on butanol production. Optimum conditions of pH 6.7, sugar concentration 42.2 g/L and agitation rate 48 rpm were predicted, under which a maximum butanol yield of 0.27 g/g-sugar was estimated. Further experiments demonstrated that higher agitation facilitated acetone production, leading to lower butanol selectivity in total acetone–butanol–ethanol (ABE). While glucose and fructose are more preferable by C. beijerinckii, sucrose can also be easily degraded by the microorganism. This study indicated that RSM is a useful approach for optimizing operational conditions for butanol production, and demonstrated that tropical maize, with high yield of biomass and stalk sugars, is a promising biofuel crop.  相似文献   

2.
During the fermentation process, Clostridium acetobutylicum cells are often inhibited by the accumulated butanol. However, the mechanism underlying response of C. acetobutylicum to butanol stress remains poorly understood. This study was performed to clarify such mechanism through investigating the butanol stress-associated intracellular biochemical changes at acidogenesis phase (i.e., middle exponential phase) and solventogenesis phase (i.e., early stationary phase) by a gas chromatography-mass spectrometry-based metabolomics strategy. With the aid of partial least-squares-discriminant analysis, a pairwise discrimination between control group and butanol-treated groups was revealed, and 27 metabolites with variable importance in the projection value greater than 1 were identified. Under butanol stress, the glycolysis might be inhibited while TCA cycle might be promoted. Moreover, changes of lipids and fatty acids compositions, amino acid metabolism and osmoregulator concentrations might be the key factors involved in C. acetobutylicum metabolic response to butanol stress. It was suggested that C. acetobutylicum cells might change the levels of long acyl chain saturated fatty acids and branched-chain amino acids to maintain the integrity of cell membrane through adjusting membrane fluidity under butanol stress. The increased level of glycerol was considered to be correlated with osmoregulation and regulating redox balance. In addition, increased levels of some amino acids (i.e., threonine, glycine, alanine, phenylalanine, tyrosine, tryptophan, aspartate and glutamate) might also confer butanol tolerance to C. acetobutylicum. These results highlighted our knowledge about the response or adaptation of C. acetobutylicum to butanol stress, and would contribute to the construction of feasible butanologenic strains with higher butanol tolerance.  相似文献   

3.
During pretreatment and hydrolysis of fiber-rich agricultural biomass, compounds such as salts, furfural, hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic, rho-coumaric acids, and phenolic compounds are produced. Clostridium beijerinckii BA101 can utilize the individual sugars present in lignocellulosic [e.g., corn fiber, distillers dry grain solubles (DDGS), etc] hydrolysates such as cellobiose, glucose, mannose, arabinose, and xylose. In these studies we investigated the effect of some of the lignocellulosic hydrolysate inhibitors associated with C. beijerinckii BA101 growth and acetone-butanol-ethanol (ABE) production. When 0.3 g/L rho-coumaric and ferulic acids were introduced into the fermentation medium, growth and ABE production by C. beijerinckii BA101 decreased significantly. Furfural and HMF are not inhibitory to C. beijerinckii BA101; rather they have stimulatory effect on the growth of the microorganism and ABE production.  相似文献   

4.
This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790–810 g L−1) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption–desorption processes has been calculated to be 1,948 kcal kg−1 butanol as compared to 5,789 kcal kg−1 butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg−1 butanol, respectively. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

5.
We examined the effect of gas-stripping on the in situ removal of acetone, butanol, and ethanol (ABE) from batch reactor fermentation broth. The mutant strain (Clostridium beijerinckii BA101) was not affected adversely by gas stripping. The presence of cells in the fermentation broth affected the selectivities of ABE. A considerable improvement in the productivity and yield was recorded in this work in comparison with the non-integrated process. In an integrated process of ABE fermentation-recovery using C. beijerinckii BA101, ABE productivities and yield were improved up to 200 and 118%, respectively, as compared to control batch fermentation data. In a batch reactor C. beijerinckii BA101 utilized 45.4 g glucose l–1 and produced 17.7 g total ABE l–1, while in the integrated process it utilized 161.7 g glucose l–1 and produced total ABE of 75.9 g l–1. In the integrated process, acids were completely converted to solvents when compared to the non-integrated process (batch fermentation) which contained residual acids at the end of fermentation. In situ removal of ABE by gas stripping has been reported to be one of the most important techniques of solvent removal. During these studies we were able to maintain the ABE concentration in the fermentation broth below toxic levels.  相似文献   

6.
Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions.  相似文献   

7.
The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/S) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.  相似文献   

8.
Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii P260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 °C using a 14-L bioreactor (7.0 L fermentation volume) containing initial substrate (glucose) concentration of 60 g/L. The bioreactor was connected in series with a condensation system and vacuum pump. Vacuum was applied continuously or intermittently with 1.5 h vacuum sessions separated by 4, 6, and 8 h intervals. A control ABE fermentation experiment was characterized by incomplete glucose utilization due to butanol toxicity to C. beijerinckii P260, while fermentation coupled with in situ recovery by both continuous and intermittent vacuum modes resulted in complete utilization of glucose, greater productivity, improved cell growth, and concentrated recovered ABE stream. These results demonstrate that vacuum technology can be applied to integrated ABE fermentation and recovery even though the boiling point of butanol is greater than that of water.  相似文献   

9.
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l−1) in a batch process resulted in the production of 18.4 g l−1 ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l−1 ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l−1 ABE was produced compared to 18.6 g l−1 (control). In this integrated system, 225.8 g l−1 SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l−1 glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

10.
A novel aqueous two-phase system consisted of 2-propanol/ammonium sulfate was used for the extraction of 2,3-butanediol from fermentation broths. The maximum partition coefficient and recovery of 2,3-butanediol reached 9.9 and 93.7%, respectively, and more than 99% of the cells and about 85% of the soluble proteins were removed when 34% (w/w) 2-propanol and 20% (w/w) ammonium sulfate were used. The separated cells could be re-used as inocula for subsequent fermentations. The aqueous two-phase system described in this study may have potential application in the extraction of 2,3-butanediol produced by industrial fermentation processes.  相似文献   

11.
The information available on the microbial communities responsible for pollutant degradation is increasingly accessible. Its use to optimize process design and operation is an important challenge in the field of effluent treatment research. Therefore, a prototype of a moving bed biotrickling filter (MBBTF) reactor was designed and, for the first time, operated at full-scale for the removal of sulfides desorbing from tannery industrial wastewater. The bacterial community operating in this innovative reactor was studied, and its composition and response to different operating conditions were characterized. A stable biomass, dominated by sulfur-oxidizing bacteria of the genus Acidithiobacillus was selected from inside the MBBTF reactor, and temperature, pH and bed rotation were shown to be the main factors driving the community structure. Moreover, data from different approaches indicated an uneven spatial distribution of biofilm inside the studied reactor, due to the combined effect of fluid dynamics and substrate gradients within the bed volume. Despite the high removal efficiency achieved by this innovative prototype (80% on average), the data suggested that the result could be improved by adopting solutions for a more stable and even biofilm distribution. It was shown that short frequent bed rotations, rather than long scattered rotations, ensured biomass stability. Furthermore, diversifying biofilm support media as a function of expected local pollutant concentrations should be considered. Data obtained from the bacterial community can therefore provide indications for possible further improvement of MBBTF reactor design and performance.  相似文献   

12.
Gasification followed by syngas fermentation is a unique hybrid process for converting lignocellulosic biomass into fuels and chemicals. Current syngas fermentation faces several challenges with low gas–liquid mass transfer being one of the major bottlenecks. The aim of this work is to evaluate the performance of hollow fiber membrane biofilm reactor (HFM-BR) as a reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (KLa) of the HFM-BR was determined at abiotic conditions within a wide range of gas velocity/flowrate passing through the hollow fiber lumen and liquid velocity/flowrate passing through the membrane module shell. The KLa values of the HFM-BR were higher than most reactor configurations such as stir tank reactors and bubble columns. A continuous syngas fermentation of Clostridium carboxidivorans P7 was implemented in the HFM-BR system at different operational conditions, including the syngas flow rate, liquid recirculation between the module and reservoir, and the dilution rate. It was found that the syngas fermentation performance such as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid depended not only on the mass transfer efficiency but also the characteristics of biofilm attached on the membrane module (biofouling or abrading of the biofilm). The HFM-BR results in a highest ethanol concentration of 23.93 g/L with an ethanol to acetic acid ratio of 4.79. Collectively, the research shows the HFM-BR is an efficient reactor system for syngas fermentation with high mass transfer.  相似文献   

13.
Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF.  相似文献   

14.
Adult steelhead Oncorhynchus mykiss tagged with archival transmitters primarily migrated through a large river corridor at depths >2 m interspersed with frequent but short (<5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the supersaturated dissolved gas conditions encountered and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon Oncorhynchus tshawytscha study, except O. mykiss experienced greater seasonal variability and were more likely to have depth uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.  相似文献   

15.
Anaerobic fermentation for hydrogen (H2) production was studied in a two-stage fermentation system fed with different ripened fruit feedstocks (apple, pear, and grape). Among the feedstocks, ripened apple was the most efficient substrate for cumulative H2 production (4463.7 mL-H2 L−1-culture) with a maximum H2 yield (2.2 mol H2 mol−1 glucose) in the first stage at a hydraulic retention time (HRT) of 18 h. The additional cumulative biohydrogen (3337.4 mL-H2 L−1-culture) was produced in the second stage with the reused residual substrate from the first stage. The major byproducts in this study were butyrate, acetate, and ethanol, and butyrate was dominant among them in all test runs. During the two-stage system, the energy efficiency (H2 conversion) obtained from mixed ripened fruits (RF) increased from 4.6% (in the first stage) to 15.5% (in the second stage), which indicated the energy efficiency can be improved by combined hydrogen production process. The RF could be used as substrates for biohydrogen fermentation in a two-stage (dark/dark) fermentation system.  相似文献   

16.
The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0–8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information on ruminal degradation of CP and starch from maize grains.  相似文献   

17.
18.
The aim of this study was to determine the time required for the cardiovascular system of a conscious cynomolgus monkey, in which a telemetry had been implanted, to recover from excitement induced by handling stress. With enforcement of guidelines regarding safety pharmacological studies, cardiovascular studies in primates have become more important. However, as macaque monkeys are promptly excited under experimental procedures, it is often difficult to evaluate the drug effects on the cardiovascular system. Therefore, we tested monkey chair restraint and intravenous injection of saline. After monkey chair restraint and intravenous injection, approximately 30 minutes were required for recovery of both heart rate and blood pressure to their pre-treatment level; however, ECG parameters such as PR, QRS interval, and QTc did not drastically change. Based on our current results and with sufficient consideration of autonomic nervous effects, accurate evaluation of drug effects on the cardiovascular system should now be possible.  相似文献   

19.
The fermentation of hemicellulosic hydrolysate from Pinus taeda chips, using the fungal culture Rhizopus oryzae, was carried out to produce l-(+)-lactic acid and to optimize and enhance the biological conversion of reducing sugar into l-(+)-lactic acid using the experimental design to evaluate the culture conditions. The first factorial design based on surface response with five factors (agitation level, substrate concentration, CaCO3 concentration, C/N and C/P ratios) at low levels and one medium point was performed to optimize culture conditions. The second study tested two factors (substrate concentration and C/N ratio) at three levels. The statistical analysis of the data obtained from the factorial study showed that a C/N ratio of 35 and substrate concentration of 90 g/litre were the best conditions to produce l-(+)-lactic acid with R. oryzae on P. taeda hydrolysate, but in this case the statistical projection was not correct and the real optimized conditions were C/N ratio of 55 and substrate concentration of 75 g/litre of reducing sugar.  相似文献   

20.
Whether fluctuation in density influenced the growth and maturation variables of three aggregated cohorts (fish born during the 1986–1993, 1996–2003 and 2004–2008 periods) of Pacific sardine Sardinops sagax caeruleus collected off the Californian coast from 2004 to 2010 was investigated. Using a von Bertalanffy mixed‐effects model with aggregated cohorts as covariates, estimated growth rate significantly covaried with aggregated cohorts. Growth rate (K) was modelled as a fixed effect and estimated to be 0·264 ± 0·015 (±s.e ). Statistical contrasts among aggregated cohorts showed that the 1996–2003 cohorts had a significantly lower growth rate than the other two aggregated cohorts. The theoretical age at length zero (t0) and the standard length at infinity (LS) were modelled as random effects, and were estimated to be ?2·885 ± 0·259 (±s.e ) and 273·13 ± 6·533 mm (±s.e ). The relation of ovary‐free mass at length was significantly different among the three aggregated cohorts, with the allometric coefficient estimated to be 2·850 ± 0·013 (±s.e ) for the S. sagax population. The age‐at‐length trajectory of S. sagax born between 1986 and 2008 showed strong density dependence effects on somatic growth rates. In contrast to the density‐dependent nature of growth, the probability to be mature at‐size or at‐age was not significantly affected by aggregated cohort density. The size and the age‐at‐50% maturity were estimated to be 150·92 mm and 0·56 years, respectively. Stock migration, natural fluctuations in biomass and removal of older and larger S. sagax by fishing might have been interplaying factors controlling growth parameters during 1986–2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号