首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NMR spectroscopy is by far the most versatile and information rich technique to study intrinsically disordered proteins (IDPs). While NMR is able to offer residue level information on structure and dynamics, assignment of chemical shift resonances in IDPs is not a straightforward process. Consequently, numerous pulse sequences and assignment protocols have been developed during past several years, targeted especially for the assignment of IDPs, including experiments that employ HN, Hα or 13C detection combined with two to six indirectly detected dimensions. Here we propose two new HN-detection based pulse sequences, (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H, that provide correlations with 1HN(i ? 1), 13C′(i ? 1) and 15N(i), and 1HN(i + 1), 13C′(i) and 15N(i) frequencies, respectively. Most importantly, they offer sequential links across the proline bridges and enable filling the single proline gaps during the assignment. We show that the novel experiments can efficiently complement the information available from existing HNCO and intraresidual i(HCA)CO(CA)NH pulse sequences and their concomitant usage enabled >95 % assignment of backbone resonances in cytoplasmic tail of adenosine receptor A2A in comparison to 73 % complete assignment using the HNCO/i(HCA)CO(CA)NH data alone.  相似文献   

2.
An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely 13C′(i), 15N(i), 1HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the “out-and-back” style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the 13C′ dimension and on average 1.6 times higher sensitivity especially for residues in α-helices. Performance of the new experiment was tested on a small globular protein ubiquitin and an intrinsically unfolded 110-residue cancer/testis antigen CT16/PAGE5. Use of intraresidual i(HCA)CO(CA)NH experiment in combination with the established HNCO experiment was crucial for the assignment of highly disordered CT16.  相似文献   

3.
We developed an NMR pulse sequence, 3D HCA(N)CO, to correlate the chemical shifts of protein backbone 1Hα and 13Cα to those of 13C′ in the preceding residue. By applying 2H decoupling, the experiment was accomplished with high sensitivity comparable to that of HCA(CO)N. When combined with HCACO, HCAN and HCA(CO)N, the HCA(N)CO sequence allows the sequential assignment using backbone 13C′ and amide 15N chemical shifts without resort to backbone amide protons. This assignment strategy was demonstrated for 13C/15N-labeled GB1 dissolved in 2H2O. The quality of the GB1 structure determined in 2H2O was similar to that determined in H2O in spite of significantly smaller number of NOE correlations. Thus this strategy enables the determination of protein structures in 2H2O or H2O at high pH values.  相似文献   

4.
A novel sensitivity-enhancement technique is proposed for experiments which correlate protein backbone resonances and start with magnetization from 13C-1H groups. The technique is based on replenishing magnetization lost by dipole-CSA cross-correlated relaxation of the 13C spin with 13C steady state magnetization. The principle is demonstrated for the (HCA)CONH experiment, resulting in 1.6-fold sensitivity enhancement compared to the HN(CA)CO experiment. Furthermore, other versions of the (HCA)CONH experiment were evaluated, including a novel experiment with spin-locking of transverse 13C-1H two-spin coherence, and a cross-correlation compensated (CA)CONH experiment which starts from 13C rather than 1H magnetization.  相似文献   

5.
We present three novel exclusively heteronuclear 5D 13C direct-detected NMR experiments, namely (HN-flipN)CONCACON, (HCA)CONCACON and (H)CACON(CA)CON, designed for easy sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The experiments proposed have been optimized to overcome the drawbacks which may dramatically complicate the characterization of IDPs by NMR, namely the small dispersion of chemical shifts and the fast exchange of the amide protons with the solvent. A fast and reliable automatic assignment of α-synuclein chemical shifts was obtained with the Tool for SMFT-based Assignment of Resonances (TSAR) program based on the information provided by these experiments.  相似文献   

6.
7.
We propose a new alpha proton detection based approach for the sequential assignment of natively unfolded proteins. The proposed protocol superimposes on following features: HA-detection (1) enables assignment of natively unfolded proteins at any pH, i.e., it is not sensitive to rapid chemical exchange undergoing in natively unfolded proteins even at moderately high pH. (2) It allows straightforward assignment of proline-rich polypeptides without additional proline-customized experiments. (3) It offers more streamlined and less ambiguous assignment based on solely intraresidual 15N(i)-13C′(i)-Hα(i) (or 15N(i)-13Cα(i)-Hα(i)) and sequential 15N(i + 1)-13C′(i)-Hα(i) (or 15N(i + 1)-13Cα(i)-Hα(i)) correlation experiments together with efficient use of chemical shifts of 15N and 13C′ nuclei, which show smaller dependence on residue type. We have tested the proposed protocol on two proteins, small globular 56-residue GB1, and highly disordered, proline-rich 47-residue fifth repeat of EspFU. Using the proposed approach, we were able to assign 90% of 1Hα, 13Cα, 13C′, 15N chemical shifts in EspFU. We reckon that the HA-detection based strategy will be very useful in the assignment of natively unfolded proline-rich proteins or polypeptide chains.  相似文献   

8.
A new method for backbone resonance assignment suitable for large proteins with the natural 1H isotope content is proposed based on a combination of the most sensitive TROSY-type triple-resonance experiments. These techniques include TROSY-HNCO, 13C-detected 3D multiple-quantum HACACO and the newly developed 3D TROSY multiple-quantum-HN(CA)HA and 4D TROSY multiple-quantum-HACANH experiments. The favorable relaxation properties of the multiple-quantum coherences, signal detection using the 13C antiphase coherences, and the use of TROSY optimize the performance of the proposed set of experiments for application to large protonated proteins. The method is demonstrated with the 44 kDa uniformly 15N,13C-labeled and fractionally (35%) deuterated trimeric B. Subtilis Chorismate Mutase and is suitable for proteins with large correlation times but a relatively small number of residues, such as membrane proteins embedded in micelles or oligomeric proteins.  相似文献   

9.
Development of efficient strategies and automation represent important milestones of progress in rapid structure determination efforts in proteomics research. In this context, we present here an efficient algorithm named as AUTOBA (Automatic Backbone Assignment) designed to automate the assignment protocol based on HN(C)N suite of experiments. Depending upon the spectral dispersion, the user can record 2D or 3D versions of the experiments for assignment. The algorithm uses as inputs: (i) protein primary sequence and (ii) peak-lists from user defined HN(C)N suite of experiments. In the end, one gets HN, 15N, Cα and C′ assignments (in common BMRB format) for the individual residues along the polypeptide chain. The success of the algorithm has been demonstrated, not only with experimental spectra recorded on two small globular proteins: ubiquitin (76 aa) and M-crystallin (85 aa), but also with simulated spectra of 27 other proteins using assignment data from the BMRB.  相似文献   

10.
Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′-13Cα CSA/dipolar and 13C′/13C′–15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone.  相似文献   

11.
A simple spectroscopic filtering technique is presented that may aid the assignment of 13C and 15N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) 13C-homonuclear and 15N–13C heteronuclear correlation experiments. The 2D 13C–13C correlation spectra are recorded with the methyl filter implemented prior to a 13C–13C mixing step. It is shown that these methyl-filtered 13C-homonuclear correlation spectra are instrumental in the assignment of Cδ resonances of leucines by suppression of Cγ–Cδ cross peaks. Further, a methyl filter is implemented prior to a 15N–13C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D 15N–13C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential 15N–13C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.  相似文献   

12.
Aromatic proton resonances of proteins are notoriously difficult to assign. Through-bond correlation experiments are preferable over experiments that rely on through-space interactions because they permit aromatic chemical shift assignments to be established independently of the structure determination process. Known experimental schemes involving a magnetization transfer across the Cβ–Cγ bond in aromatic side chains either suffer from low efficiency for the relay beyond the Cδ position, use sophisticated 13C mixing schemes, require probe heads suitable for application of high 13C radio-frequency fields or rely on specialized isotopic labelling patterns. Novel methods are proposed that result in sequential assignment of all aromatic protons in uniformly 13C/15N labelled proteins using standard spectrometer hardware. Pulse sequences consist of routinely used building blocks and are therefore reasonably simple to implement. Ring protons may be correlated with β-carbons and, alternatively, with amide protons (and nitrogens) or carbonyls in order to take advantage of the superior dispersion of backbone resonances. It is possible to record spectra in a non-selective manner, yielding signals of all aromatic residues, or as amino-acid type selective versions to further reduce ambiguities. The new experiments are demonstrated with four different proteins with molecular weights ranging from 11 kDa to 23 kDa. Their performance is compared with that of (Hβ)Cβ(CγCδ)Hδ and (Hβ)Cβ(CγCδCɛ)Hɛ pulse sequences [Yamazaki et al. (1993) J Am Chem Soc 115:11054–11055]. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

13.
NMR assignment of intrinsically disordered proteins (IDPs) by conventional HN-detected methods is hampered by the small dispersion of the amide protons chemical shifts and exchange broadening of amide proton signals. Therefore several alternative assignment strategies have been proposed in the last years. Attempting to seize that dispersion of 13C′ and 15N chemical shifts holds even in IDPs, we recently proposed two 13C-detected experiments to directly correlate the chemical shifts of two consecutive 13C′–15N groups in proteins, i.e. without mediation of other nuclei. Main drawback of these experiments is the interruption of the connection at prolines. Here we present new 13C-detected experiments to correlate consecutive 13C′–15N groups in IDPs, hacacoNcaNCO and hacaCOncaNCO, that overcome this limitation. Moreover, the experiments provide recognition of glycine residues, thereby facilitating the assignment process.  相似文献   

14.
The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain.  相似文献   

15.
A simple labeling approach is presented based on protein expression in [1-13C]- or [2-13C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone Cα sites, respectively. All of the methyl groups, with the exception of Thr and Ile(δ1) are produced with isolated 13C spins (i.e., no 13C–13C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-α sites are labeled without concomitant labeling at Cβ positions for 17 of the common 20 amino acids and there are no cases for which 13Cα13CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone 15N studies. The utility of the labeling is established by recording 13C R and CPMG-based experiments on a number of different protein systems.  相似文献   

16.
Summary A new 1H−13C−31P triple resonance experiment is described which allows unambigous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4′i and C4′i-1, because of the relatively large J′PC4 couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4′i and C4′i-1 coherences are subsequently transferred to, amongst others, H1′i and H1′i-1, respectively, leading to a 2D 1H−31P spectrum which allows a sequential assignment in the 31P−1H1′ region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5′(GGGC-CAAA-GCCU)3′.  相似文献   

17.
We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs.  相似文献   

18.
Biological solid-state nuclear magnetic resonance spectroscopy developed rapidly in the past two decades and emerged as an important tool for structural biology. Resonance assignment is an essential prerequisite for structure determination and the characterization of motional properties of a molecule. Experiments, which rely on carbon or nitrogen detection, suffer, however, from low sensitivity. Recently, we introduced the RAP (Reduced Adjoining Protonation) labeling scheme, which allows to detect backbone and sidechain protons with high sensitivity and resolution. We present here a 1H-detected 3D (H)CCH experiment for assignment of backbone and sidechain proton resonances. Resolution is significantly improved by employing simultaneous 13CO and 13J-decoupling during evolution of the 13Cα chemical shift. In total, ~90% of the 1Hα-13Cα backbone resonances of chicken α-spectrin SH3 could be assigned.  相似文献   

19.
We present here an NMR pulse sequence with 5 independent incrementable time delays within the frame of a 3-dimensional experiment, by incorporating polarization sharing and dual receiver concepts. This has been applied to directly record 3D-HA(CA)NH and 3D-HACACO spectra of proteins simultaneously using parallel detection of 1H and 13C nuclei. While both the experiments display intra-residue backbone correlations, the 3D-HA(CA)NH provides also sequential ‘i ? 1  i’ correlation along the 1Hα dimension. Both the spectra contain special peak patterns at glycine locations which serve as check points during the sequential assignment process. The 3D-HACACO spectrum contains, in addition, information on prolines and side chains of residues having H–C–CO network (i.e., 1Hβ, 13Cβ and 13COγ of Asp and Asn, and 1Hγ, 13Cγ and 13COδ of Glu and Gln), which are generally absent in most conventional proton detected experiments.  相似文献   

20.
We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse C′/C′-Cα CSA/dipolar and C′/C′–N CSA/dipolar cross-correlated rates, while 15N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that C′ relaxation reports on a different subset of fast motions compared to those probed at N–H bond vectors in the same peptide planes. 13C′ order parameters are on the average 0.08 lower than 15N order parameters with the exception of the flexible loop region in DHP. The reduction of mobility in the loop region upon the S74E mutation can be seen from the 15N order parameters but not from the 13C order parameters. Internal correlation times at 13C′ sites are on the average an order of magnitude longer than those at 15N sites for the well-structured C-terminal subdomains, while the more flexible N-terminal subdomains have more comparable average internal correlation times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号