首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The inactivation of TP53 by transfection of a dominant- negative mutated TP53 (MP53.13 cells) was compared with inactivation of TP53 by transfection with the HPV E6 gene (RC10.1 cells) with respect to PLD repair, G(1)-phase arrest, and induction of color junctions. Functional G(1) arrest was demonstrated in parental (RKO) cells with wild-type TP53, while in RC10.1 cells the G(1) arrest was eliminated. In MP53.13 cells an intermediate G(1) arrest was found. Functionality of endogenous TP53 was confirmed in RKO and MP53.13 cells by accumulation of TP53 protein and its downstream target CDKN1A (p21). Radiation survival of MP53.13 cells was higher than that of RKO cells, and PLD repair was found in RKO cells and MP53.13 cells but not in RC10.1 cells. Both with and without irradiation, the number of color junctions was 50 to 80% higher in MP53.13 cells than in RKO and RC10.1 cells. In the MP53.13 cells, the genetic instability appears to lead to more aberrations and to radioresistance. In spite of the presence of an excess of mutated TP53, wild- type TP53 functions appear to be affected only partly or not at all.  相似文献   

5.
6.
7.
We investigated the effect of administering priming low-dose radiation prior to high-dose radiation on the level of apoptosis and on the expression of TP53 and TP53-related genes in mouse splenocytes. The percentage of apoptotic cells was significantly lower in TP53(+/+) mice receiving priming radiation 2 to 168 h before the high-dose irradiation, compared to TP53(+/+) mice exposed to 2 Gy alone. In contrast, TP53(+/-) mice exhibited a reduced level of apoptosis only when priming was performed for 2 or 4 h prior to the high-dose irradiation. In TP53(+/+) mice, primed mice had higher TP53 expression than mice exposed to 2 Gy. Phospho-TP53 (ser15/18) expression was the highest in mice exposed to 2 Gy and intermediate in primed mice. Expression of p21 (CDKN1A) was higher in primed mice compared with mice exposed to 2 Gy. MDM2 expression remained at a high level in all mice receiving 2 Gy. Elevated phospho-ATM expression was observed only in mice exposed to 2 Gy. We conclude that TP53 plays a critical role in the radioadaptive response and that TP53 and TP53-related genes might protect cells from apoptosis through activation of the intracellular repair system.  相似文献   

8.
Regulation of the p53 tumor suppressor protein   总被引:35,自引:0,他引:35  
  相似文献   

9.
p53 was originally considered to be a nuclear oncogene, but several convergent lines of research have indicated that the wild-type gene functions as a tumor suppressor gene negatively regulating the cell cycle. Mutations in the p53 gene have been detected in many tumor types and seem to be the most common genetic alterations in human cancer. In this preliminary study, sera of 92 patients (pts) with breast disease were analyzed for the presence of the mutant p53 protein (mp53) with a selective immunoenzyme assay employing a monoclonal antibody (PAb 240) specific for the majority of mammalian m p53 but not for the wild-type protein. Of the 10 patients with benign breast disease, only two (20%) showed detectable m p53 levels in the serum. In the breast cancer group, sera from 7 of the 30 pts (23%) without lymph node involvement were positive for m p53, as were 7 out of the 45 pts (15%) with metastatic lymph nodes and 1 out of the 7 pts (14%) with disseminated disease. The specifity of m p53 assay evaluated in 20 healthy controls was 100%. These preliminary results showed that serum positivity for m p53 is not related to breast disease extension. Further studies to assess the utility of m p53 as a possible prognosis factor in breast cancer are currently in progress.  相似文献   

10.
Activation of the p53 tumor suppressor protein   总被引:19,自引:0,他引:19  
The p53 tumor suppressor gene plays an important role in preventing cancer development, by arresting or killing potential tumor cells. Mutations within the p53 gene, leading to the loss of p53 activity, are found in about half of all human cancers, while many of the tumors that retain wild type p53 carry mutations in the pathways that allow full activation of p53. In either case, the result is a defect in the ability to induce a p53 response in cells undergoing oncogenic stress. Significant advances have been made recently in our understanding of the molecular pathways through which p53 activity is regulated, bringing with them fresh possibilities for the design of cancer therapies based on reactivation of the p53 response.  相似文献   

11.
12.
13.
14.
Basal levels of autophagy are elevated in most pancreatic ductal adenocarcinomas (PDAC). Suppressing autophagy pharmacologically using chloroquine (CQ) or genetically with RNAi to essential autophagy genes inhibits human pancreatic cancer growth in vitro and in vivo, which presents possible treatment opportunities for PDAC patients using the CQ-derivative hydroxychloroquine (HCQ). Indeed, such clinical trials are ongoing. However, autophagy is a complex cellular mechanism to maintain cell homeostasis under stress. Based on its biological role, a dual role of autophagy in tumorigenesis has been proposed: at tumor initiation, autophagy helps maintain genomic stability and prevent tumor initiation; while in advanced disease, autophagy degrades and recycles cellular components to meet the metabolic needs for rapid growth. This model was proven to be the case in mouse lung tumor models. However, in contrast to prior work in various PDAC model systems, loss of autophagy in PDAC mouse models with embryonic homozygous Trp53 deletion does not inhibit tumor growth and paradoxically increases progression. This raised concerns whether there may be a genotype-dependent reliance of PDAC on autophagy. In a recent study, our group used a Trp53 heterozygous mouse PDAC model and human PDX xenografts to address the question. Our results demonstrate that autophagy inhibition was effective against PDAC tumors irrespective of TP53/TRP53 status.  相似文献   

15.
16.
The TP53 tumor suppressor protein (formerly known as p53) responds to a wide variety of environmental insults. To evaluate the safety of cellular telephones, TP53 responses in human fibroblast cells were studied after exposure to 837 MHz microwaves. Cells were exposed in a temperature-controlled transverse electromagnetic (TEM) chamber to a specific absorption rate (SAR) of 0.9 or 9.0 W/kg at 837 MHz continuous-wave (CW) microwave irradiation for 2 h. The TP53 protein levels were measured by Western blot at 2, 8, 24 and 48 h after treatment. The TP53 protein levels in microwave-treated cells, sham-treated cells, and untreated cells remained unchanged relative to each other at all times tested (Fisher test and Student-Newman-Keuls test, P > 0.05). No morphological alterations were observed in microwave-treated cells compared to sham-treated cells. We conclude that TP53 protein expression levels in cultured human fibroblast cells do not change significantly during a 48-h period after exposure to 837 MHz continuous microwaves for 2 h at SAR levels of 0.9 or 9.0 W/kg.  相似文献   

17.
The antioxidant function of the p53 tumor suppressor   总被引:22,自引:0,他引:22  
It is widely accepted that the p53 tumor suppressor restricts abnormal cells by induction of growth arrest or by triggering apoptosis. Here we show that, in addition, p53 protects the genome from oxidation by reactive oxygen species (ROS), a major cause of DNA damage and genetic instability. In the absence of severe stresses, relatively low levels of p53 are sufficient for upregulation of several genes with antioxidant products, which is associated with a decrease in intracellular ROS. Downregulation of p53 results in excessive oxidation of DNA, increased mutation rate and karyotype instability, which are prevented by incubation with the antioxidant N-acetylcysteine (NAC). Dietary supplementation with NAC prevented frequent lymphomas characteristic of Trp53-knockout mice, and slowed the growth of lung cancer xenografts deficient in p53. Our results provide a new paradigm for a nonrestrictive tumor suppressor function of p53 and highlight the potential importance of antioxidants in the prophylaxis and treatment of cancer.  相似文献   

18.
The p53 tumor suppressor gene is a logical target for cancer therapy. Several therapeutic strategies can be envisioned based upon recent advances concerning structure and function of the p53 protein, its interaction with cellular and viral proteins and its roles in repairing DNA, regulating cell division and promoting apoptosis.  相似文献   

19.
20.
p53: the ultimate tumor suppressor gene?   总被引:24,自引:0,他引:24  
M Oren 《FASEB journal》1992,6(13):3169-3176
Alterations in the gene encoding the cellular p53 protein are perhaps the most frequent type of genetic lesions in human cancer. At the heart of these alterations is the abrogation of the tumor suppressor activity of the normal p53. In many cases this is achieved through point mutations in p53, which often result in pronounced conformational changes. Such mutant polypeptides, which tend to accumulate to high levels in cancer cells, are believed to exert a dominant negative effect over coexpressed normal p53. Extensive research on p53, especially in the course of the last 3 years, has already provided much insight into the biological and biochemical mechanisms that underlie its capacity to act as a potent tumor suppressor. There are now many indications that p53 may play a central role in the control of cell proliferation, cell survival, and differentiation. Nevertheless, despite the purported importance of p53 for such crucial processes, mice can develop apparently without any defect in the total absence of p53. This raises the possibility that p53 may become critically limiting only when normal growth control is lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号