首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J S Li  S P Tong    J R Wands 《Journal of virology》1996,70(9):6029-6035
Infection by human and animal hepadnaviruses displays remarkable host and tissue tropism. The infection cycle probably initiates with binding of the pre-S domain of viral envelope protein to surface receptors present on the hepatocyte. Three types of neutralizing monoclonal antibodies against duck hepatitis B virus (DHBV) have their binding sites clustered within residues 83 to 107 of the pre-S protein, suggesting that this region may constitute a major receptor binding site. A 170- or 180-kDa duck protein (p170 or gp180) which binds DHBV particles through this part of the pre-S sequence has been identified recently. Although the p170 binding protein is host (duck) specific, its distribution is not restricted to DHBV-infectible tissues. Using the pre-S protein fused to glutathione S-transferase and immobilized on Sepharose beads, we have now identified an additional binding protein with a size of 120 kDa (p120). p120 expression is restricted to the liver, kidney, and pancreas, the three major organs of DHBV replication. While optimal p170 binding requires an intact pre-S protein, binding to p120 occurs much more efficiently with a few N- or C-terminally truncated forms. The p120 binding site was mapped to residues 98 to 102 of the pre-S region, which overlaps with a cluster of known virus-neutralizing epitopes. Site-directed mutagenesis revealed residues 100 to 102 (Phe-Arg-Arg) as the critical p120 contact site; nonconservative substitution in any of the three positions abolished p120 binding. Double mutations at positions 100 to 102 markedly reduced DHBV infectivity in cell culture. Short pre-S peptides covering the clustered neutralizing epitopes (also p170 and p120 binding sites) reduced DHBV infectivity in primary duck hepatocyte cultures. Thus, p120 represents a candidate component of the DHBV receptor complex.  相似文献   

2.
In this study we used duck hepatitis B virus (DHBV)-infected Pekin ducks and heron hepatitis B virus (HHBV)-infected heron tissue to search for epitopes responsible for virus neutralization on pre-S proteins. Monoclonal antibodies were produced by immunizing mice with purified DHBV particles. Of 10 anti-DHBV specific hybridomas obtained, 1 was selected for this study. This monoclonal antibody recognized in both DHBV-infected livers and viremic sera a major (36-kilodalton) protein and several minor pre-S proteins in all seven virus strains used. In contrast, pre-S proteins of HHBV-infected tissue or viremic sera did not react. Thus, the monoclonal antibody recognizes a highly conserved DHBV pre-S epitope. For mapping of the epitope, polypeptides from different regions of the DHBV pre-S/S gene were expressed in Escherichia coli and used as the substrate for immunoblotting. The epitope was delimited to a sequence of approximately 23 amino acids within the pre-S region, which is highly conserved in four cloned DHBV isolates and coincides with the main antigenic domain as predicted by computer algorithms. In in vitro neutralization assays performed with primary duck hepatocyte cultures, the antibody reduced DHBV infectivity by approximately 75%. These data demonstrate a conserved epitope of the DHBV pre-S protein which is located on the surface of the viral envelope and is recognized by virus-neutralizing antibodies.  相似文献   

3.
The two major envelope proteins (large [L] and small [S]) of duck hepatitis B virus are encoded by the pre-S/S open reading frame. The L protein is initiated from the AUG at position 801 in the pre-S region of the pre-S/S coding sequence, yielding an N-terminal consensus sequence for myristylation. Western immunoblots of the L protein often reveal a doublet at 36 and 35 kDa, with the latter attributed to the use of one of the three internal initiation codons. However, metabolic labelling with [3H]myristic acid results in labelling of both P35 and P36, indicating that both species must be initiated from the same start codon. Using metabolic labelling with 32P and digestion with residue-specific phosphatases, we demonstrate that L protein heterogeneity is due to phosphorylation of threonine and/or serine residues within the pre-S domain. We propose that at least one possible phosphorylation site is located at a novel (S/T)PPL motif which is conserved near the carboxyl end of the pre-S1 domain in all hepadnavirus sequences. Two to three additional (S/T)P motifs are also present in the carboxyl half of the pre-S1 (but not pre-S2 or S) domain of all hepadnaviruses. L protein in serum-derived particles is resistant to phosphatase digestion in the absence of detergents, reflecting an internal disposition of the phosphorylated pre-S domain and suggesting a role for dephosphorylation in the topological shift within L during morphogenesis (P. Ostapchuk, P. Hearing, and D. Ganem, EMBO J. 13:1048-1057, 1994). Furthermore, we observe that the relative amount of the phosphorylated form of L increases with time in the viral growth cycle. These findings imply that phosphorylation-dephosphorylation of the L protein is an important, regulated mechanism necessary for correct virion morphogenesis.  相似文献   

4.
Envelope protein precursors of many viruses are processed by a basic endopeptidase to generate two molecules, one for receptor binding and the other for membrane fusion. Such a cleavage event has not been demonstrated for the hepatitis B virus family. Two binding partners for duck hepatitis B virus (DHBV) pre-S envelope protein have been identified. Duck carboxypeptidase D (DCPD) interacts with the full-length pre-S protein and is the DHBV docking receptor, while duck glycine decarboxylase (DGD) has the potential to bind several deletion constructs of the pre-S protein in vitro. Interestingly, DGD but not DCPD expression was diminished following prolonged culture of primary duck hepatocytes (PDH), which impaired productive DHBV infection. Introduction of exogenous DGD promoted formation of protein-free viral genome, suggesting restoration of several early events in viral life cycle. Conversely, blocking DGD expression in fresh PDH by antisense RNA abolished DHBV infection. Moreover, addition of DGD antibodies soon after virus binding reduced endogenous DGD protein levels and impaired production of covalently closed circular DNA, the template for DHBV gene expression and genome replication. Our findings implicate this second pre-S binding protein as a critical cellular factor for productive DHBV infection. We hypothesize that DCPD, a molecule cycling between the cell surface and the trans-Golgi network, targets DHBV particles to the secretary pathway for proteolytic cleavage of viral envelope protein. DGD represents the functional equivalent of other virus receptors in its interaction with processed viral particles.  相似文献   

5.
The biosynthesis and topology of the large envelope protein (L protein) of hepadnaviruses was investigated using the duck hepatitis B virus (DHBV) model, which also allows the study of hepadnavirus morphogenesis in experimentally infected hepatocytes. Results from proteolysis of virus particles and from the analysis of topology and posttranslational modification of L chains synthesized in vivo or in a cell-free system both support the presence of a mixed population of L-protein molecules with their N-terminal pre-S domain located either inside or outside the virus particle. During L biosynthesis and DHBV morphogenesis, pre-S, together with the neighboring transmembrane domain (TM-I), initially remained cytoplasmically disposed and was translocated only posttranslationally. Delayed pre-S translocation into a post-endoplasmic reticulum compartment is also indicated by the absence of glycosylation at a modification-competent pre-S glycosylation site. Major features of L-protein biosynthesis and of the resulting dual topology appear to be conserved between avian and mammalian hepadnaviruses, supporting the model that pre-S domains function in part either as an internal matrix for capsid envelopment or externally as a ligand for cellular receptor binding. However, differences in the mechanisms controlling pre-S translocation were revealed by the results of mutational analyses identifying and characterizing cis-acting determinants in pre-S that delay its cotranslational translocation. Our data from DHBV demonstrate the negative influence of a cluster of positively charged amino acid residues next to TM-I, a motif that is conserved among the avian but absent from mammalian hepadnaviruses. Additional control elements, which are apparently shared between both virus groups and which may serve in chaperone binding, were mapped by deletion analysis in the central part of pre-S.  相似文献   

6.
Hepadnavirus replication requires the concerted action of the polymerase and core proteins to ensure packaging of the RNA pregenome and DNA maturation. The arginine-rich C terminus of the core protein plays an essential role in both of these steps while being dispensable for nucleocapsid formation. In an attempt to identify other functional domains of the core protein, we performed a series of trans-complementation experiments analyzing the ability of duck and human hepatitis B virus (DHBV and HBV) core protein subunits to support the replication of a core-defective DHBV genome. Plasmids expressing the N-terminal amino acids 1 to 67 or the remaining C-terminal portion, amino acids 67 to 262, of the DHBV core protein were cotransfected into LMH cells along with a replication-deficient construct coding for the DHBV pregenome and polymerase. Neither the N nor the C terminus alone yielded replication-competent core particles. However, cotransfection of plasmids that separately expressed both regions restored a normal replication pattern. Furthermore, the DHBV C terminus but not the N terminus could be replaced by the corresponding domain of the HBV core protein in this assay. Finally, coexpression of the complete HBV core protein and the N terminus from DHBV resulted in DHBV replication, while the HBV core protein alone was not functional. Taken together, these findings suggest a modular organization of the DHBV core protein in which the C terminus is functionally conserved among different hepadnaviruses.  相似文献   

7.
The pre-S2-coding region in the hepatitis B virus surface antigen M (P31; pre-S2 + S) protein gene was modified to identify a polymerized-albumin receptor (PAR) domain by deleting restriction fragments or performing site-directed mutagenesis. The modified M protein genes (M-P31x; x = d, e, f, h and i) were cloned into the yeast generalized-expression vector pGLD 906-1 and expressed in Saccharomyces cerevisiae under the control of yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter. The PAR activities of these gene products suggested that the PAR domain is located in the hydrophilic and highly conserved domain in the pre-S2 region (around Leu12 approximately Tyr21). Antibodies specific for a pre-S2 peptide (Phe8 approximately Pro34, subtype adr), which covers the PAR domain, were purified from sera of rabbits immunized with yeast-derived M protein particles having a natural PAR domain. Immune electron microscopy showed that the purified antibodies could aggregate HBV particles. Therefore, it was speculated that the PAR domain overlapped with the dominant virus-neutralizing and virus-protecting epitopes.  相似文献   

8.
J Pugh  A Zweidler    J Summers 《Journal of virology》1989,63(3):1371-1376
The amino acid composition of the major duck hepatitis B virus (DHBV) core particle proteins was determined. The results of this analysis indicated that cores are composed of a single major protein that initiates translation from the second available AUG in the DHBV core gene. Proteins isolated from core particles purified from the cytoplasm of DHBV-infected duck hepatocytes exhibited heterogeneity in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, independent of the stage of viral DNA maturation. Incubation of native cores with alkaline phosphatase removed this heterogeneity, indicating that phosphorylation of external amino acids was responsible. Core protein isolated from mature DHBV purified from serum of infected animals did not display heterogeneity, suggesting a possible role for dephosphorylation in virus maturation.  相似文献   

9.
S Tong  J Li    J R Wands 《Journal of virology》1995,69(11):7106-7112
Identification of cell surface viral binding proteins is important for understanding viral attachment and internalization. We have fused the pre-S domain of the duck hepatitis B virus (DHBV) large envelope protein to glutathione S-transferase and demonstrated a 170-kDa binding protein (p170) in [35S]methionine-labeled duck hepatocyte lysates. This glycoprotein was found abundantly in all extrahepatic tissues infectible with DHBV and in some noninfectible tissues, though it is not secreted into the blood. The interaction of pre-S fusion protein with p170 was competitively inhibited by wild-type DHBV in a dose-dependent manner. In addition, infection of hepatocytes with DHBV blocked the binding of pre-S fusion protein to p170, which suggests a biological role for p170 during natural infection. The p170 binding site was mapped to a conserved sequence of 16 amino acid residues (positions 87 to 102) by using 24 pre-S deletion mutants; this binding domain coincides with a major virus-neutralizing antibody epitope. Furthermore, site-directed mutagenesis revealed that an arginine residue at position 97 is critical for p170 binding. p170 was purified by a combination of ion-exchange and affinity chromatographies, and four peptide sequences were obtained. Two peptides showed significant similarities to human and animal carboxypeptides H, M, and N. Taken together, these results raise the possibility that the p170 binding protein is important during the replication cycle of DHBV.  相似文献   

10.

Background  

Chronic hepatitis B virus (HBV) infection is an important cause of hepatocellular carcinoma (HCC) worldwide. The pre-S1 and -S2 mutant large HBV surface antigen (LHBS), in which the pre-S1 and -S2 regions of the LHBS gene are partially deleted, are highly associated with HBV-related HCC.  相似文献   

11.
12.
M Yu  J Summers 《Journal of virology》1994,68(7):4341-4348
We have investigated the role of phosphorylation of the capsid protein of the avian hepadnavirus duck hepatitis B virus in viral replication. We found previously that three serines and one threonine in the C-terminal 24 amino acids of the capsid protein serve as phosphorylation sites and that the pattern of phosphorylation at these sites in intracellular viral capsids is complex. In this study, we present evidence that the phosphorylation state of three of these residues affects distinct steps in viral replication. By substituting these residues with alanine in order to mimic serine, or with aspartic acid in order to mimic phosphoserine, and assaying the effects of these substitutions on various steps in virus replication, we were able to make the following inferences. (i) The presence of phosphoserines at residues 245 and 259 stimulates DNA synthesis within viral nucleocapsids. (ii) The absence of phosphoserine at residue 257 and at residues 257 and 259 stimulates covalently closed circular DNA synthesis and virus production, respectively. (iii) The presence of phosphoserine at position 259 is required for initiation of infection. The results implied that both phosphorylated and nonphosphorylated capsid proteins were necessary for a nucleocapsid particle to carry out all its functions in virus replication, explaining why differential phosphorylation of the capsid protein occurs in hepadnaviruses. Whether these differentially phosphorylated proteins coexist on the same nucleocapsid, or whether the nucleocapsid acquires sequential functions through selective phosphorylation and dephosphorylation, is discussed.  相似文献   

13.
14.
15.
16.
Characteristics of pre-S2 region of hepatitis B virus   总被引:1,自引:0,他引:1  
The nucleotide sequence of our cloned HBV DNA (subtype adw) has been determined. When the 165-nucleotide sequence of the pre-S2 region was compared with 7 other published sequences (subtypes adw, adr, ayw, and adyw), we found 38 nucleotide substitutions among different subtypes and 4 (adr) or 6 (adw and ayw) substitutions within the same subtype. Analysis of the predicted amino acid sequence from the known nucleotide sequences indicates that: there are 20 amino acid substitutions, the longest conserved amino acid sequence is located between amino acids 23 to 34, and the 54th amino acid is identical within the same subtype but varies in different subtypes.  相似文献   

17.
J T Guo  J C Pugh 《Journal of virology》1997,71(6):4829-4831
As an approach to identifying hepatocyte receptors for the avian hepadnavirus duck hepatitis B virus (DHBV), hybridomas were prepared from mice immunized with permissive duck hepatocytes. Monoclonal antibodies (MAbs) were screened for the ability to inhibit binding of DHBV particles to primary duck hepatocytes and to block infection. We identified two MAbs which partially blocked binding and caused marked inhibition of infection of primary duck hepatocytes with DHBV. Lack of cross-reactivity with DHBV envelope proteins suggested that inhibition of infection was due to specific interaction between the antibodies and a host cell surface molecule. Both MAbs immunoprecipitated a 55-kDa protein (p55) expressed in duck liver and several other duck tissues. p55 homologs were also identified in other birds and mammals. We predict from our data that only a small proportion of total cellular p55 molecules are expressed at the surfaces of hepatocytes and that p55 is involved in some early step in the infectious pathway.  相似文献   

18.
Chai N  Gudima S  Chang J  Taylor J 《Journal of virology》2007,81(10):4912-4918
Hepatitis B virus (HBV) replication produces three envelope proteins (L, M, and S) that have a common C terminus. L, the largest, contains a domain, pre-S1, not present on M. Similarly M contains a domain, pre-S2, not present on S. The pre-S1 region has important functions in the HBV life cycle. Thus, as an approach to studying these roles, the pre-S1 and/or pre-S2 sequences of HBV (serotype adw2, genotype A) were expressed as N-terminal fusions to the Fc domain of a rabbit immunoglobulin G chain. Such proteins, known as immunoadhesins (IA), were highly expressed following transfection of cultured cells and, when the pre-S1 region was present, >80% were secreted. The IA were myristoylated at a glycine penultimate to the N terminus, although mutation studies showed that this modification was not needed for secretion. As few as 30 amino acids from the N terminus of pre-S1 were both necessary and sufficient to drive secretion of IA. Even expression of pre-S1 plus pre-S2, in the absence of an immunoglobulin chain, led to efficient secretion. Overall, these studies demonstrate an unexpected ability of the N terminus of pre-S1 to promote protein secretion. In addition, some of these secreted IA, at nanomolar concentrations, inhibited infection of primary human hepatocytes either by hepatitis delta virus (HDV), a subviral agent that uses HBV envelope proteins, or HBV. These IA have potential to be part of antiviral therapies against chronic HDV and HBV, and may help understand the attachment and entry mechanisms used by these important human pathogens.  相似文献   

19.
V Bruss  K Vieluf 《Journal of virology》1995,69(11):6652-6657
The large hepatitis B virus (HBV) surface protein (L) forms two isomers which display their N-terminal pre-S domain at the internal and external side of the viral envelope, respectively. The external pre-S domain has been implicated in binding to a virus receptor. To investigate functions of the internal pre-S domain, a secretion signal sequence was fused to the N terminus of L (sigL), causing exclusive expression of external pre-S domains. A fusion construct with a nonfunctional signal (s25L), which corresponds in its primary sequence to sigL cleaved by signal peptidase, was used as a control. SigL was N glycosylated in transfected COS cells at both potential sites in pre-S in contrast to s25L or wild-type L, confirming the expected transmembrane topologies of sigL and s25L. Phenotypic characterization revealed the following points. (i) SigL lost the inhibitory effect of L or s25L on secretion of subviral hepatitis B surface antigen particles, suggesting that the retention signal mapped to the N terminus of L is recognized in the cytosol and not in the lumen of the endoplasmic reticulum. (ii) SigL was secreted into the culture medium even in the absence of the major HBV surface protein (S), while release of an L mutant lacking the retention signal was still dependent on S coexpression. (iii) s25L but not sigL could complement an L-negative HBV genome defective for virion secretion in cotransfections. This suggests that the cytosolic pre-S domain, like a matrix protein, is involved in the interaction of the viral envelope with preformed cytosolic nucleocapsids during virion assembly.  相似文献   

20.
It has been suggested that hepatitis B virus (HBV) binds to a receptor on the plasma membrane of human hepatocytes via the pre-S1 domain of the large envelope protein as an initial step in HBV infection. However, the nature of the receptor remains controversial. In an attempt to identify a cell surface receptor for HBV, purified recombinant fusion protein of the pre-S1 domain of HBV with glutathione S-transferase (GST), expressed in Escherichia coli, was used as a ligand. The surface of human hepatocytes or HepG2 cells was biotinylated, and the cell lysate (precleared lysate) which did not bind to GST and glutathione-Sepharose beads was used as a source of receptor molecules. The precleared lysate of the biotinylated cells was incubated with the GST-pre-S1 fusion protein, and the bound proteins were visualized by Western blotting and enhanced chemiluminescence. An approximately 80-kDa protein (p80) was shown to bind specifically to the pre-S1 domain of the fusion protein. The receptor binding assay using serially or internally deleted segments of pre-S1 showed that amino acid residues 12 to 20 and 82 to 90 are essential for the binding of pre-S1 to p80. p80 also bound specifically to the pre-S1 of native HBV particles. Analysis of the tissue and species specificity of p80 expression in several available human primary cultures and cell lines of different tissue origin showed that p80 expression is not restricted to human hepatocytes. Taken together the results suggest that p80 may be a component of the viral entry machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号