首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Pharmacological opening of mitochondrial cardiac ATP-sensitive potassium (K(ATP)) channels has the chance to be a promising but still controversial cardioprotective mechanism. Physiological roles of mitochondrial K(ATP) channels in the myocardium remain unclear. We studied the effects of diazoxide, a specific opener of these channels, on the function of rat mitochondria in situ in saponin-permeabilized fibers using an ionic medium that mimics the cytosol. In the presence of NADH-producing substrates (malate + glutamate), neither 100 microm diazoxide nor 100 microm glibenclamide (a K(ATP) channel blocker) changed the mitochondrial respiration in the absence or presence of ADP. Because the K(ATP) channel function could be modified by changes in adenine nucleotide concentrations near the mitochondria, we studied the effects of diazoxide and glibenclamide on the functional activity of mitochondrial kinases. Both diazoxide and glibenclamide did not change the in situ ADP sensitivity in the presence or absence of creatine (apparent K(m) values for ADP were, respectively, 59 +/- 9 and 379 +/- 45 microm). Similarly, stimulation of the mitochondrial respiration with AMP in the presence of ATP due to adenylate kinase activity was not affected by the modulators of K(ATP) channels. However, when succinate was used as substrate, diazoxide significantly inhibited basal respiration by 22% and maximal respiration by 24%. Thus, at a cardioprotective dose, the main functional effect of diazoxide depends on respiratory substrates and seems not to be related to K(ATP) channel activity.  相似文献   

14.
15.
16.
17.
18.
19.
《BBA》1985,808(2):316-322
The dependence of both respiration and total activity of ATP-consuming reactions on the cellular adenine nucleotide pattern was investigated in intact bovine spermatozoa. ATP consumption was manipulated by inhibition with vanadate and activation with caffeine, leading to a decrease or increase in the rate of respiration up to 70% or 20%, respectively. Oligomycin blocked the respiration to the same extent as did vanadate, suggesting that the total extramitochondrial ATP-consuming activity is vanadate-sensitive. The major part of ATP utilization must be linked to dynein ATPase, since inhibition of (Na+, K+) ATPase by ouabain showed only a small effect on respiration (−17%). Being a potent inhibitor of dynein ATPase, vanadate drastically reduced the amount of motile cells, whereas caffeine tended to increase the intensity of motion. The effects of vanadate or caffeine on respiration were paralleled by changes in cellular ATP, reflecting the response of mitochondrial respiration on the cellular ATP/ADP ratio. Respiration was found to depend on changes in the ATP/ADP ratio in the range from about 3 (+ caffeine) to 9 (+ vanadate). The range of response of ATP consumption to the ATP/ADP ratio was determined by varying the mitochondrial ATP production via the concentration of lactate which was used as substrate. The measured effects on both respiratory rate and ATP/ADP ratio suggested that ATP consumption was markedly dependent on ATP/ADP ratios below 5. It is concluded that lactate concentrations above 1 mM sufficiently supply bovine spermatozoa with substrate and the energy turnover is mainly limited by the activity of dynein ATPase rather than by the capacity of mitochondrial oxidative phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号