首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
As new drugs rapidly advance into clinical trials, comprehensive identification of their intracellular targets becomes fundamental for the full understanding of the molecular basis of their efficacy and toxicity. This is particularly important when the targets belong to a large family and the inhibitors recognize a conserved site among different members of the class. A typical example is the kinase family, where efforts are aimed at the development of inhibitors of distinct kinases for therapeutic applications in oncology, inflammation and other disease areas. In this case, inhibitors targeting the ATP pocket may cross react with different kinases, as well as with other proteins that bind ATP. This review critically discusses the available approaches for kinase selectivity profiling. It also reviews some examples of inhibitor affinity chromatography applied to inhibitors of kinases and other protein families as a tool to identify and characterize their intracellular targets.  相似文献   

2.
As new drugs rapidly advance into clinical trials, comprehensive identification of their intracellular targets becomes fundamental for the full understanding of the molecular basis of their efficacy and toxicity. This is particularly important when the targets belong to a large family and the inhibitors recognize a conserved site among different members of the class. A typical example is the kinase family, where efforts are aimed at the development of inhibitors of distinct kinases for therapeutic applications in oncology, inflammation and other disease areas. In this case, inhibitors targeting the ATP pocket may cross react with different kinases, as well as with other proteins that bind ATP. This review critically discusses the available approaches for kinase selectivity profiling. It also reviews some examples of inhibitor affinity chromatography applied to inhibitors of kinases and other protein families as a tool to identify and characterize their intracellular targets.  相似文献   

3.
The results of this study of the sharing of elements of culture concerned with family life among nuclear family members indicate that members of family statuses share no more with one another than they do with members of their society in general. The highest levels of sharing are found not within statuses but within families. In some family relationships it was found that high levels of sharing develop over time rather than being brought to the relationships from their outset, but this does not seem to be true of all family relationships. Differences in levels of sharing between families in the same society were found to be greater than differences between different societies. The status-centered model of cultural sharing as currently formulated appears a weak basis for a broader cultural theory because of its failure to account for important elements in cultural distribution not attributable to status membership alone , [cultural differences, culture, family, status, theory]  相似文献   

4.
Soyer OS  Dimmic MW  Neubig RR  Goldstein RA 《Biochemistry》2003,42(49):14522-14531
G-Protein-coupled receptors (GPCRs) are an important superfamily of transmembrane proteins involved in cellular communication. Recently, it has been shown that dimerization is a widely occurring phenomenon in the GPCR superfamily, with likely important physiological roles. Here we use a novel hidden-site class model of evolution as a sequence analysis tool to predict possible dimerization interfaces in GPCRs. This model aims to simulate the evolution of proteins at the amino acid level, allowing the analysis of their sequences in an explicitly evolutionary context. Applying this model to aminergic GPCR sequences, we first validate the general reasoning behind the model. We then use the model to perform a family specific analysis of GPCRs. Accounting for the family structure of these proteins, this approach detects different evolutionarily conserved and accessible patches on transmembrane (TM) helices 4-6 in different families. On the basis of these findings, we propose an experimentally testable dimerization mechanism, involving interactions among different combinations of these helices in different families of aminergic GPCRs.  相似文献   

5.
Mpho M  Callaghan A  Holloway GJ 《Heredity》2002,88(4):307-312
Fluctuating asymmetry (FA) has been proposed as a tool to measure levels of stress experienced by populations of organisms during development. To be of value as a bio-marker to highlight conditions at particular sites, it is important that variation in FA is due to environmental (eg pollution) variation and not genetic variation among populations and families, in other words heritability for FA should be very close to zero. A full-sib design was set up in which families of Culex pipiens mosquitoes collected from the field were reared at three different developmental temperatures. The effects of temperature and family on developmental rate, egg to adult survival and four wing morphological measures were assessed. There was both a temperature and a family effect on development rate and survival. Temperature affected all four wing traits, but an influence of family was only evident in two of the wing traits. Two separate measures of FA for each of the wing traits were obtained. The mean estimates of FA were mainly around 1% of the value of the character measured. There was evidence of an increase in FA with increase in temperature stress. Heritability was estimated for the wing traits and wing trait FA's using restricted estimation maximum likelihood. The estimates of heritability for the wing traits were small and, individually, did not differ significantly from zero. There was also no evidence of heritable genetic variation for any of the wing trait FA's. The results are discussed in relation to other studies where FA heritabilities have been estimated and in relation to the use of FA as an indicator of environmental stress.  相似文献   

6.
Sequence-based phylogenies (SBP) are well-established tools for describing relationships between proteins. They have been used extensively to predict the behavior and sensitivity toward inhibitors of enzymes within a family. The utility of this approach diminishes when comparing proteins with little sequence homology. Even within an enzyme family, SBPs must be complemented by an orthogonal method that is independent of sequence to better predict enzymatic behavior. A chemogenomic approach is demonstrated here that uses the inhibition profile of a 130,000 diverse molecule library to uncover relationships within a set of enzymes. The profile is used to construct a semimetric additive distance matrix. This matrix, in turn, defines a sequence-independent phylogeny (SIP). The method was applied to 97 enzymes (kinases, proteases, and phosphatases). SIP does not use structural information from the molecules used for establishing the profile, thus providing a more heuristic method than the current approaches, which require knowledge of the specific inhibitor's structure. Within enzyme families, SIP shows a good overall correlation with SBP. More interestingly, SIP uncovers distances within families that are not recognizable by sequence-based methods. In addition, SIP allows the determination of distance between enzymes with no sequence homology, thus uncovering novel relationships not predicted by SBP. This chemogenomic approach, used in conjunction with SBP, should prove to be a powerful tool for choosing target combinations for drug discovery programs as well as for guiding the selection of profiling and liability targets.  相似文献   

7.
Rooney AP  Ward TJ 《Gene》2008,427(1-2):124-128
The birth-and-death model of multigene family evolution describes patterns of gene origination, diversification and loss within multigene families. Since it was first developed in the 1990s, the model has been found to characterize a large number of eukaryotic multigene families. In this paper, we report for the first time a bacterial multigene family that undergoes birth-and-death evolution. By analyzing the evolutionary relationships among internalins, a relatively large and diverse family of genes associated with key virulence functions in Listeria, we demonstrate the importance of birth-and-death evolution in the diversification of this important bacterial pathogen. We also detected two instances of lateral gene transfer within the internalins, but the estimated frequency would have been much higher had it not been analyzed within the context of birth-and-death evolutionary dynamics and a phenomenon that we term "paralog-sorting", which involves the unequal transmittal of gene duplicates during or subsequent to the speciation process. As such, in addition to providing the first demonstration of birth-and-death evolution within a bacterial multigene family, our results indicate that the extent of lateral transfer in bacterial multigene families should be re-examined in the light of birth-and-death evolution.  相似文献   

8.
Aim The global richness gradient of angiosperm families is correlated with current climate, and it has been claimed that historical processes are not necessary to understand patterns of plant family richness. This claim has drawn criticism, and there have been doubts about the quality of the data used to quantify the pattern. We revisit this issue using the Angiosperm Phylogeny Group (APG) III classification and revised range maps, and we incorporate an evolutionary variable, family age, to explore covariation between evolution and ecology and their links to climate via the tropical conservatism hypothesis (TCH). Location Global. Methods The richness pattern for 408 families was derived from range maps, and family ages were derived from a dated angiosperm phylogeny. Patterns were generated for all families, 143 families composed of trees, and 149 families composed of herbs. We also examined family range size patterns to test the extent to which extratropical floras are nested subsets of tropical floras. Ordinary least squares (OLS) multiple and partial regressions were used to generate climate models for richness, mean range size and mean age for each plant dataset and to evaluate the covariation between contemporary climate and clade age as correlates of family richness. Results We confirmed the strong association between contemporary climate and family richness. Age patterns predicted by TCH were also found for families comprising trees. The richness of herbaceous families, in contrast, was correlated with climate but the age pattern was not as predicted by TCH. Floras in cold and dry areas are strongly nested within richer tropical floras. Main conclusions Phylogenetic niche conservatism at the family level offers a likely explanation for the global diversity gradient of trees, but not for non‐desert herbs, probably because of the faster evolutionary rates for herbs and less constrained evolutionary responses to climate change. Thus, it appears that multiple processes account for the overall angiosperm family gradient. Our analysis also demonstrates that even very strong associations of taxon richness and climate do not preclude evolutionary processes, as has been widely argued, and that climatic and evolutionary hypotheses for richness gradients are not mutually exclusive.  相似文献   

9.
Advances in microarray technology have made it attractive to combine information on clinical traits, marker genotypes, and comprehensive gene expression from family studies to dissect complex disease genetics. Without accounting for family structure, methods that test for association between a trait and gene-expression levels can be misleading. We demonstrate that the standard unstratified test based on Pearson's correlation coefficient can produce spurious results when applied to family data, and we present a stratified family expression association test (FEXAT). We illustrate the utility of the FEXAT via simulation and an application to gene-expression data from lymphoblastoid cell lines from four CEPH families. The FEXAT has a smaller estimated false-discovery rate than the standard test when within-family correlations are of interest, and it detects biologically plausible correlations between beta catenin and genes in the WNT-activation pathway in humans that the standard test does not.  相似文献   

10.
It has been suggested that altering the pace of reproduction would improve the health of women and children. For formulating intervention policies, it is important to know whether on its own such a strategy is likely to lead to risk reduction. This paper analyses mortality risk in sibships to explore the relationship between family formation factors and other household characteristics that identify women whose families are at higher risk. The analysis allows for the fact that reproductive behaviour may be modified by the family's prior experience of child death, using simultaneous equations methods to purge the model of the 'feedback' effects of death on the endogenous variable, childbearing pace. The strong relationship between reproductive pace and average risk in a family appears to be due to the association of both with other differences between households. Other aspects of family formation patterns are good indicators of which families are likely to experience excess risks to their children. These factors are associated with maternal education, but measure characteristics of the family or mother that educational attainment does not fully capture. They indicate that high-risk mothers are likely to have less control over many aspects of their lives. The pace of family building does not lead to excess average family risk, but may result, at least in part, from the concentration of risk in families with other characteristic patterns of family formation and few resources. The paper argues for a broader conception of household influences on child health and the health-related behaviour of parents.  相似文献   

11.
High-resolution mapping is an important step in the identification of complex disease genes. In outbred populations, linkage disequilibrium is expected to operate over short distances and could provide a powerful fine-mapping tool. Here we build on recently developed methods for linkage-disequilibrium mapping of quantitative traits to construct a general approach that can accommodate nuclear families of any size, with or without parental information. Variance components are used to construct a test that utilizes information from all available offspring but that is not biased in the presence of linkage or familiality. A permutation test is described for situations in which maximum-likelihood estimates of the variance components are biased. Simulation studies are used to investigate power and error rates of this approach and to highlight situations in which violations of multivariate normality assumptions warrant the permutation test. The relationship between power and the level of linkage disequilibrium for this test suggests that the method is well suited to the analysis of dense maps. The relationship between power and family structure is investigated, and these results are applicable to study design in complex disease, especially for late-onset conditions for which parents are usually not available. When parental genotypes are available, power does not depend greatly on the number of offspring in each family. Power decreases when parental genotypes are not available, but the loss in power is negligible when four or more offspring per family are genotyped. Finally, it is shown that, when siblings are available, the total number of genotypes required in order to achieve comparable power is smaller if parents are not genotyped.  相似文献   

12.
Correlated mutation analyses (CMA) on multiple sequence alignments are widely used for the prediction of the function of amino acids. The accuracy of CMA‐based predictions is mainly determined by the number of sequences, by their evolutionary distances, and by the quality of the alignments. These criteria are best met in structure‐based sequence alignments of large super‐families. So far, CMA‐techniques have mainly been employed to study the receptor interactions. The present work shows how a novel CMA tool, called Comulator, can be used to determine networks of functionally related residues in enzymes. These analyses provide leads for protein engineering studies that are directed towards modification of enzyme specificity or activity. As proof of concept, Comulator has been applied to four enzyme super‐families: the isocitrate lyase/phoshoenol‐pyruvate mutase super‐family, the hexokinase super‐family, the RmlC‐like cupin super‐family, and the FAD‐linked oxidases super‐family. In each of those cases networks of functionally related residue positions were discovered that upon mutation influenced enzyme specificity and/or activity as predicted. We conclude that CMA is a powerful tool for redesigning enzyme activity and selectivity. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Several families of G protein-coupled receptors (GPCRs) show no significant sequence similarities to each other, and it has been debated which of them share a common origin. We developed and performed integrated and independent HHsearch, Needleman--Wunsch-based and motif analyses on more than 6,600 unique GPCRs from 12 species. Moreover, we mined the evolutionary important Trichoplax adhaerens, Nematostella vectensis, Thalassiosira pseudonana, and Strongylocentrotus purpuratus genomes, revealing remarkably rich vertebrate-like GPCR repertoires already in the early Metazoan species. We found strong evidence that the Adhesion and Frizzled families are children to the cyclic AMP (cAMP) family with HHsearch homology probabilities of 99.8% and 99.4%, respectively, also supported by the Needleman--Wunsch analysis and several motifs. We also found that the large Rhodopsin family is likely a child of the cAMP family with an HHsearch homology probability of 99.4% and conserved motifs. Therefore, we suggest that the Adhesion and Frizzled families originated from the cAMP family in an event close to that which gave rise to the Rhodopsin family. We also found convincing evidence that the Rhodopsin family is parent to the important sensory families; Taste 2 and Vomeronasal type 1 as well as the Nematode chemoreceptor families. The insect odorant, gustatory, and Trehalose receptors, frequently referred to as GPCRs, form a separate cluster without relationship to the other families, and we propose, based on these and others' results, that these families are ligand-gated ion channels rather than GPCRs. Overall, we suggest common descent of at least 97% of the GPCRs sequences found in humans.  相似文献   

14.
T H Meuwissen 《Biometrics》1991,47(1):195-203
The effect of family structure is of increasing importance in modern breeding schemes, because increased intraclass correlations between relatives due to improved breeding value estimation methods use all family information, and increased family sizes are possible with improved reproduction rates. In addition, reduction of the generation intervals in modern breeding schemes leads to increased intraclass (family) correlations, because young animals have little information on individual or on progeny performance. This paper derives an approximation for the selection differential in a population divided into families. The result is then extended to an approximation for the selection differentials in populations that are divided into full sib families within paternal half sib families. The approximation is compared with Monte Carlo results, from which it is concluded that the approximation is satisfactory (i.e., rarely more than 5% in error). In some practical situations the approximation is shown to be not more than 2% in error. With high intraclass correlations and few animals selected, the reduction of the selection differentials is maximal. When breeding values are based on family information and the family structure is not accounted for, overestimation of the selection differentials can be up to 61%.  相似文献   

15.
Thiamine diphosphate-dependent decarboxylases catalyze both cleavage and formation of C C bonds in various reactions, which have been assigned to different homologous sequence families. This work compares 53 ThDP-dependent decarboxylases with known crystal structures. Both sequence and structural information were analyzed synergistically and data were analyzed for global and local properties by means of statistical approaches (principle component analysis and principal coordinate analysis) enabling complexity reduction. The different results obtained both locally and globally, that is, individual positions compared with the overall protein sequence or structure, revealed challenges in the assignment of separated homologous families. The methods applied herein support the comparison of enzyme families and the identification of functionally relevant positions. The findings for the family of ThDP-dependent decarboxylases underline that global sequence identity alone is not sufficient to distinguish enzyme function. Instead, local sequence similarity, defined by comparisons of structurally equivalent positions, allows for a better navigation within several groups of homologous enzymes. The differentiation between homologous sequences is further enhanced by taking structural information into account, such as BioGPS analysis of the active site properties or pairwise structural superimpositions. The methods applied herein are expected to be transferrable to other enzyme families, to facilitate family assignments for homologous protein sequences.  相似文献   

16.
As increasingly more genomes are sequenced, the vast majority of proteins may only be annotated computationally, given experimental investigation is extremely costly. This highlights the need for computational methods to determine protein functions quickly and reliably. We believe dividing a protein family into subtypes which share specific functions uncommon to the whole family reduces the function annotation problem’s complexity. Hence, this work’s purpose is to detect isofunctional subfamilies inside a family of unknown function, while identifying differentiating residues. Similarity between protein pairs according to various properties is interpreted as functional similarity evidence. Data are integrated using genetic programming and provided to a spectral clustering algorithm, which creates clusters of similar proteins. The proposed framework was applied to well-known protein families and to a family of unknown function, then compared to ASMC. Results showed our fully automated technique obtained better clusters than ASMC for two families, besides equivalent results for other two, including one whose clusters were manually defined. Clusters produced by our framework showed great correspondence with the known subfamilies, besides being more contrasting than those produced by ASMC. Additionally, for the families whose specificity determining positions are known, such residues were among those our technique considered most important to differentiate a given group. When run with the crotonase and enolase SFLD superfamilies, the results showed great agreement with this gold-standard. Best results consistently involved multiple data types, thus confirming our hypothesis that similarities according to different knowledge domains may be used as functional similarity evidence. Our main contributions are the proposed strategy for selecting and integrating data types, along with the ability to work with noisy and incomplete data; domain knowledge usage for detecting subfamilies in a family with different specificities, thus reducing the complexity of the experimental function characterization problem; and the identification of residues responsible for specificity.  相似文献   

17.
Repetitive sequences in Caenorhabditis elegans are interspersed along the holocentric chromosomes. We have physically mapped some of these repetitive families and found that, although the distribution of members of each family is relatively even along the chromosomes, members of more than one family tend to cluster in some locations. We compared the sequence organization of 11 clusters located at known positions on different chromosomes in the N2 strain. These studies allow a comparison between repetitive elements belonging to the same family that are located on the same or on different chromosomes, providing an important tool in the study of genome turnover and evolution.  相似文献   

18.
Gloor GB  Martin LC  Wahl LM  Dunn SD 《Biochemistry》2005,44(19):7156-7165
Information theory was used to identify nonconserved coevolving positions in multiple sequence alignments from a variety of protein families. Coevolving positions in these alignments fall into two general categories. One set is composed of positions that coevolve with only one or two other positions. These positions often display direct amino acid side-chain interactions with their coevolving partner. The other set comprises positions that coevolve with many others and are frequently located in regions critical for protein function, such as active sites and surfaces involved in intermolecular interactions and recognition. We find that coevolving positions are more likely to change protein function when mutated than are positions showing little coevolution. These results imply that information theory may be applied generally to find coevolving, nonconserved positions that are part of functional sites in uncharacterized protein families. We propose that these coevolving positions compose an important subset of the positions in an alignment, and may be as important to the structure and function of the protein family as are highly conserved positions.  相似文献   

19.
There has been a growing interest in the role that shared family mealtimes may play in promoting the health and well-being of children. Families that regularly eat their main meal together four or more times a week are more likely to have children who do better in school, are of average weight, less likely to use drugs and alcohol at an early age, and consume more fruits and vegetables. The mere fact that families eat together does not address the process by which shared family mealtimes may protect children from unhealthy weight gain. Just as there is no simple explanation for the rising rates of obesity, the link between shared family mealtimes and childhood obesity is a complex one including socioeconomic and cultural context. In this paper, we provide an overview of how shared family mealtimes are embedded in a socio-cultural context that may either support or derail healthy eating patterns for children and youth. Evidence from an observational study of 200 family mealtimes demonstrates the complex interplay between socio-economic factors, family mealtime behaviors, and child obesity status. Families who had a child of healthy weight spent more time engaged with each other during the meal, expressed more positive communication, and considered mealtimes more important and meaningful than families who had a child who was overweight or obese. Using a cumulative risk model, it was found that the combination of family level and neighborhood risk factors predicted child overweight status. Recommendations are made for future research directions and policies directed toward families living in diverse economic circumstances.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号