首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
He  Zheng-Hui  Cheeseman  Iain  He  Deze  Kohorn  Bruce D. 《Plant molecular biology》1999,39(6):1189-1196
WAK1 (wall-associated kinase 1) is a cytoplasmic serine/threonine kinase that spans the plasma membrane and extends into the extracellular region to bind tightly to the cell wall. The Wak1 gene was mapped and found to lie in a tight cluster of five highly similar genes (Wak1–5) within a 30 kb region. All of the Wak genes encode a cytoplasmic serine/threonine protein kinase, a transmembrane domain, and an extracytoplasmic region with several epidermal growth factor (EGF) repeats. The extracellular regions also contain limited amino acid identities to the tenascin superfamily, collagen, or the neurexins. RNA blot analysis with gene-specific probes revealed that Wak1, Wak3 and Wak5 are expressed primarily in leaves and stems of Arabidopsis. Wak4 mRNA is only detected in siliques, while Wak2 mRNA is found in high levels in leaves and stems, and in lower levels in flowers and siliques. A trace amount of Wak2 can also be detected in roots. Wak1 is induced by pathogen infection and salicylic acid or its analogue INA and is involved in the plant's response, and Wak2, Wak3 and Wak5 also can be greatly induced by salicylic acid or INA. The WAK proteins have the potential to serve as both linkers of the cell wall to the plasma membrane and as signaling molecules, and since Wak expression is organ-specific and the isoforms vary significantly in the cell wall associated domain this family of proteins may be involved in cell wall-plasma membrane interactions that direct fundamental processes in angiosperms.  相似文献   

2.
The Arabidopsis mutant cad1 (constitutively activated cell death 1) shows a phenotype that mimics hypersensitive response (HR)-like cell death. The CAD1 gene, which encodes a protein containing a domain with significant homology to the MACPF (membrane attach complex and perforin) domain of complement components and perforin, is likely to control plant immunity negatively and has a W-box cis-element in its promoter region. We found that expression of the CAD1 gene and other W-box containing genes, such as NPR1 and PR2, was promoted by salicylic acid (SA) and benzothiadiazole (BTH) as a SA agonist. The CAD1 gene was also stimulated by a purified chitin oligosaccharide elicitor (degree of polymerization = 8). This latter control was not under SA, because CAD1 expression was not suppressed in 35SnahG transgenic plants, which are unable to accumulate SA. These expression profiles were confirmed by promoter analysis using pCAD1::GUS transgenic plants. The CAD1 expression promoted by BTH and the chitin elicitor was not suppressed in the npr1 mutant, which is insensitive to SA signaling. These results indicate that the CAD1 gene is regulated by two distinct pathways involving SA and a chitin elicitor: viz., SA signaling mediated through an NPR1-independent pathway, and chitin elicitor signaling, through an SA-independent pathway. Three CAD1 homologs that have multiple W-box elements in their promoters were also found to be under the control of SA.  相似文献   

3.
Changes in lipoxygenase (LOX) protein pattern and/or activity were investigated in relation to acquired resistance of cucumber (Cucumis sativus L.) leaves against two powdery mildews, Sphaerotheca fuliginea (Schlecht) Salmon and Erysiphe cichoracearum DC et Merat. Acquired resistance was established by spraying leaves with salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA) and estimated in whole plants by infested leaf area compared to control plants. SA was more effective than INA. According to Western blots, untreated cucumber leaves contained a 97 kDa LOX form, which remained unchanged for up to 48 h after pathogen inoculation. Upon treatment with SA alone for 24 h or with INA plus pathogen, an additional 95 kDa LOX form appeared which had an isoelectric point in the alkaline range. For the induction of this form, a threshold concentration of 1 mM SA was required, higher SA concentrations did not change LOX-95 expression which remained similar between 24 h and 96 h but further increased upon mildew inoculation. Phloem exudates contained only the LOX-97 form, in intercellular washing fluid no LOX was detected. dichloroisonicotinic localization revealed LOX protein in the cytosol of the mesophyll cells without differences between the forms.  相似文献   

4.
To study the possible involvement of plant hormones in the synthesis of stress proteins in tomato upon inoculation with Cladosporium fulvum, we investigated the induction of mRNAs encoding PR proteins and ethylene biosynthesis enzymes by ethephon, 2,6-dichloroisonicotinic acid (INA) and salicylic acid (SA) by northern blot analysis. Ethephon slightly induced some but not all mRNAs encoding intra- and extracellular PR proteins. INA induced all PR protein mRNAs analysed, except for intracellular chitinase and extracellular PR-4. SA induced all PR protein mRNAs analyzed, except for intracellular chitinase and osmotin. None of the inducers affected the expression of ACC synthase mRNA, whereas all three induced ethylene-forming enzyme (EFE) mRNA.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - HR hypersensitive response - INA 2,6-dichloroisonicotinic acid - PR pathogenesis-related - SA salicylic acid - SAR systemic acquired resistance  相似文献   

5.
6.
7.
Cao H  Bowling SA  Gordon AS  Dong X 《The Plant cell》1994,6(11):1583-1592
Systemic acquired resistance (SAR) is a general defense response in plants that is characterized by the expression of pathogenesis-related (PR) genes. SAR can be induced after a hypersensitive response to an avirulent pathogen or by treatment with either salicylic acid (SA) or 2,6-dichloroisonicotinic acid (INA). To dissect the signal transduction pathway of SAR, we isolated an Arabidopsis mutant that lacks the expression of an SA-, INA-, and pathogen-responsive chimeric reporter gene composed of the 5[prime] untranslated region of an Arabidopsis PR gene, [beta]-1,3-glucanase (BGL2), and the coding region of [beta]-glucuronidase (GUS). This mutant, npr1 (nonexpresser of PR genes), carries a single recessive mutation that abolishes the SAR-responsive expression of other PR genes as well. While SA-, INA-, or avirulent pathogen-induced SAR protects wild-type plants from Pseudomonas syringae infection, the mutant cannot be protected by pretreatment with these inducers. The insensitivity of npr1 to SA, INA, and avirulent pathogens in SAR induction indicates that these inducers share a common signal transduction pathway. Moreover, in npr1, the localized expression of PR genes induced by a virulent Pseudomonas pathogen is disrupted, and the lesion formed is less confined. These results suggest a role for PR genes in preventing the proximal spread of pathogens in addition to their suggested role in SAR.  相似文献   

8.
Sulphonation of small molecules by cytosolic sulphotransferases in mammals is an important process in which endogenous molecules are modified for inactivation/activation of their biological effects. Plants possess large numbers of sulphotransferase genes, but their biological functions are largely unknown. Here, we present a functional analysis of the Arabidopsis sulphotransferase AtSOT12 (At2g03760). AtSOT12 gene expression is strongly induced by salt, and osmotic stress and hormone treatments. The T‐DNA knock‐out mutant sot12 exhibited hypersensitivity to NaCl and ABA in seed germination, and to salicylic acid (SA) in seedling growth. In vitro enzyme activity assay revealed that AtSOT12 sulphonates SA, and endogenous SA levels suggested that sulphonation of SA positively regulates SA production. Upon challenging with the pathogen Pseudomonas syringae, sot12 mutant and AtSOT12 over‐expressing lines accumulate less and more SA, respectively, when compared with wild type. Consistent with the changes in SA levels, the sot12 mutant was more susceptible, while AtSOT12 over‐expressing plants are more resistant to pathogen infection. Moreover, pathogen‐induced PR gene expression in systemic leaves was significantly enhanced in AtSOT12 over‐expressing plants. The role of sulphonation of SA in SA production, mobile signalling and acquired systemic resistance is discussed.  相似文献   

9.
10.
11.
The response of tobacco (Nicotiana tabacum L. cv. Xanthinc) plants, epigenetically suppressed for phenylalanine ammonia-lyase (PAL) activity, was studied following infection by tobacco mosaic virus (TMV). These plants contain a bean PAL2 transgene in the sense orientation, and have reduced endogenous tobacco PAL mRNA and suppressed production of phenylpropanoid products. Lesions induced by TMV infection of PAL-suppressed plants are markedly different in appearance from those induced on control plants that have lost the bean transgene through segregation, with a reduced deposition of phenofics. However, they develop at the same rate as on control tobacco, and pathogenesis-related (PR) proteins are induced normally upon primary infection. The levels of free salicylic acid (SA) produced in primary inoculated leaves of PAL-suppressed plants are approximately fourfold lower than in control plants after 84 h, and a similar reduction is observed in systemic leaves. PR proteins are not induced in systemic leaves of PAL-suppressed plants, and secondary infection with TMV does not result in the restriction of lesion size and number seen in control plants undergoing systemic acquired resistance (SAR). In grafting experiments between wild-type and PAL-suppressed tobacco, the SAR response can be transmitted from a PAL-suppressed root-stock, but SAR is not observed if the scion is PAL-suppressed. This indicates that, even if SA is the systemic signal for establishment of SAR, the amount of pre-existing phenylpropanoid compounds in systemic leaves, or the ability to synthesize further phenylpropanoids in response to the systemic signal, may be important for the establishment of SAR. Treatment of PAL-suppressed plants with dichloro-isonicotinic acid (INA) induces PR protein expression and SAR against subsequent TMV infection. However, treatment with SA, while inducing PR proteins, only partially restores SAR, further suggesting that de novo synthesis of SA, and/or the presence or synthesis of other phenylpropanoids, is required for expression of resistance in systemic leaves.  相似文献   

12.
13.
β‐Aminobutyric acid (BABA) pretreatment of Brassica plants protected them against the necrotrophic pathogen Alternaria brassicae. The achieved resistance level was much higher than that seen after salicylic acid (SA) and jasmonic acid (JA) pretreatments. BABA pretreatment to the leaves, 1 day before inoculation, led to an inhibition of the oxidative burst and a decrease in SA levels, but did not influence lipoxygenase activity nor cause callose deposition at the site of inoculation. Expression of two marker genes of the SA and JA pathways, namely PR1 and PDF1.2, was enhanced in response to BABA pretreatment. Our results indicate that BABA‐induced resistance is mediated through an enhanced expression of pathogenesis‐related protein genes, independent of SA and JA accumulation.  相似文献   

14.
In Arabidopsis, there is a family of receptor-like protein kinases (RLKs) containing novel cysteine-rich repeats in their extracellular domains. Genes encoding many of these cysteine-rich RLKs (CRKs) are induced by pathogen infection, suggesting a possible role in plant defense responses. We have previously generated Arabidopsis plants expressing four pathogen-regulated CRK genes (CRK5, 6, 10 and 11) under control of a steroid-inducible promoter and found that induced expression of CRK5, but not the other three CRK genes, triggered hypersensitive response-like cell death in transgenic plants. In the present study, we have analyzed the structural relationship of the CRK family and identified three CRKs (CRK4, 19 and 20) that are structurally closely related to CRK5. Genes encoding these three CRKs are all induced by salicylic acid and pathogen infection. Furthermore, induced expression of CRK4, 19and 20 all activates rapid cell death in transgenic plants. Thus, the activity of inducing rapid cell death is shared by these structurally closely related CRKs. We have also performed yeast two-hybrid screens and identified proteins that interact with the kinase domains of CRKs. One of the identified CRK-interacting proteins is the kinase-associated type 2C protein phospohatase known to interact with a number of other RLKs through its kinase-interacting FHA domain. Other CRK-interacting proteins include a second protein with a FHA domain and another type 2C protein phosphatase. Interactions of CRKs with these three proteins in vivo were demonstrated through co-immunoprecipitation. These CRK-interacting proteins may play roles in the regulation and signaling of CRKs.  相似文献   

15.
In Arabidopsis, NPR1 (non-expressor of pathogenesis related genes 1, AtNPR1) functions downstream of salicylic acid (SA) and modulates the SA mediated systemic acquired resistance. It is also involved in a cross talk with the jasmonate pathway that is essential for resistance against herbivores and necrotrophic pathogens. Overexpression of AtNPR1 in transgenic plants resulted in enhanced disease resistance. Recently, tobacco transgenic plants expressing AtNPR1 were shown to be tolerant to the early instars of Spodoptera litura (Meur et al., Physiol Plant 133:765–775, 2008). In this communication, we show that the heterologous expression of AtNPR1 in tobacco has also enhanced the oxidative stress tolerance. The transgenic plants exhibited enhanced tolerance to the treatment with methyl viologen. This tolerance was associated with the constitutive upregulation of PR1, PR2 (glucanase), PR5 (thaumatin like protein), ascorbate peroxidase (APX) and Cu2+/Zn2+ superoxide dismutase (SOD). This is the first demonstration of the novel function of heterologous expression of AtNPR1 in oxidative stress tolerance in transgenic tobacco.  相似文献   

16.
17.
Pokeweed antiviral protein (PAP), a ribosome-inactivating protein isolated from Phytolacca americana, is characterized by its ability to depurinate the sarcin/ricin (S/R) loop of the large rRNA of prokaryotic and eukaryotic ribosomes. In this study, we present evidence that PAP is associated with ribosomes and depurinates tobacco ribosomes in vivo by removing more than one adenine and a guanine. A mutant of pokeweed antiviral protein, PAPn, which has a single amino acid substitution (G75D), did not bind ribosomes efficiently, indicating that Gly-75 in the N-terminal domain is critical for the binding of PAP to ribosomes. PAPn did not depurinate ribosomes and was non-toxic when expressed in transgenic tobacco plants. Unlike wild-type PAP and a C-terminal deletion mutant, transgenic plants expressing PAPn did not have elevated levels of acidic pathogenesis-related (PR) proteins. PAPn, like other forms of PAP, did not trigger production of salicylic acid (SA) in transgenic plants. Expression of the basic PR proteins, the wound-inducible protein kinase and protease inhibitor II, was induced in PAPn-expressing transgenic plants and these plants were resistant to viral and fungal infection. These results demonstrate that PAPn activates a particular SA-independent, stress-associated signal transduction pathway and confers pathogen resistance in the absence of ribosome binding, rRNA depurination and acidic PR protein production.  相似文献   

18.
In mammals, lipid bodies play a key role during pathological and infectious diseases. However, our knowledge on the function of plant lipid bodies, apart from their role as the major site of lipid storage in seed tissues, remains limited. Here, we provide evidence that a calcium‐dependent protein kinase (CPK) mediates pathogen resistance in Arabidopsis. AtCPK1 expression is rapidly induced by fungal elicitors. Loss‐of‐function mutants of AtCPK1 exhibit higher susceptibility to pathogen infection compared to wild‐type plants. Conversely, over‐expression of AtCPK1 leads to accumulation of salicylic acid (SA) and constitutive expression of SA‐regulated defence and disease resistance genes, which, in turn, results in broad‐spectrum protection against pathogen infection. Expression studies in mutants affected in SA‐mediated defence responses revealed an interlocked feedback loop governing AtCPK1 expression and components of the SA‐dependent signalling pathway. Moreover, we demonstrate the dual localization of AtCPK1 in lipid bodies and peroxisomes. Overall, our findings identify AtCPK1 as a component of the innate immune system of Arabidopsis plants.  相似文献   

19.
20.
Plant cells often use cell surface receptors to sense environmental changes and then transduce external signals via activated signaling pathways to trigger adaptive responses. In Arabidopsis, the receptor-like protein kinase (RLK) gene family contains more than 600 members, and some of these are induced by pathogen infection, suggesting a possible role in plant defense responses. We previously characterized an S-locus RLK (CBRLK1) at the biochemical level. In this study, we examined the physiological function of CBRLK1 in defense responses. CBRLK1 mutant and CBRLK1-overexpressing transgenic plants showed enhanced and reduced resistance against a virulent bacterial pathogen, respectively. The altered pathogen resistances of the mutant and overexpressing transgenic plants were associated with increased and reduced induction of the pathogenesis-related gene PR1, respectively. These results suggest that CBRLK1 plays a negative role in the disease resistance signaling pathway in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号