首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

2.
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.  相似文献   

3.
When isolated frog skeletal muscles were incubated with 14C-labeled adenosine, the nucleoside was rapidly taken up by the cells and was either immediately incorporated into adenine nucleotides or deaminated to inosine. Incorporation was predominant at low (micromolar) concentrations whereas, deamination was the major route of metabolism at high (millimolar) concentrations. When muscles were incubated with 14C-labeled inosine the nucleoside, after entry into the cells, was metabolized to a lesser extent than adenosine. ATP and hypoxanthine were the major products of its metabolism. Intracellular concentrations were calculated using 3H-labeled sorbitol to measure the extracellular space.Because of its lower rate of intracellular metabolism inosine was used to investigate the characteristics of the nucleoside transport system. The uptake of inosine was saturable at high concentrations and was specifically inhibited by the presence of adenosine or uridine in the incubation media. Persantin, a well known specific inhibitor of nucleoside transport, also competitively inhibited inosine uptake, as did theophylline [1, Woo et al. Can J. Physiol. Pharmacol. 52, 1063, 1974]. These data, along with the knowledge that in a well-oxygenated muscle, inosine entry follows a downhill chemical potential gradient, strongly support the view that the transport mechanism is facilitated diffusion.The muscle cell membrane does not appear to be permeable to 14C-labeled ATP under the conditions studied. Investigations of the permeability to the major extracellular degradation products of ATP suggest that AMP was the compound most likely to cross the cell membrane.  相似文献   

4.
Pathways of adenine nucleotide catabolism in primary rat muscle cultures   总被引:2,自引:0,他引:2  
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2'-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined in cell extracts. The results demonstrate that under physiological conditions, there is a small but significant flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5'-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

5.
[3H]Adenosine was taken up and metabolized by isolated ganglia of the marine mollusc Aplysia californica. After 2 h, most of the radioactivity was recovered as metabolites, including ATP, ADP, and AMP, as well as the deaminated products, inosine, hypoxanthine, and uric acid. Little remained in the form of adenosine. These pathways were not uniformly distributed among various tissue elements. In most individual neurons, inosine and its breakdown products were the principal metabolites of [3H]adenosine, whereas ATP and other nucleotides predominated in the connective tissue sheath. Endogenous levels of ATP, ADP, AMP, and adenosine in ganglia, sheath, and individual neurons were also determined using a fluorimetric-HPLC assay. The concentrations of the nucleotides were quite uniform in sheath and among the individual neurons assayed (1-5 pmol/microgram of protein); however, concentrations of adenosine were considerably higher in neurons than in the sheath.  相似文献   

6.
Cell surface ecto-nucleotidases are considered the major effector system for inactivation of extracellular adenine nucleotides, whereas the alternative possibility of ATP synthesis has received little attention. Using a TLC assay, we investigated the main exchange activities of 3H-labeled adenine nucleotides on the cultured human umbilical vein endothelial cells. Stepwise nucleotide degradation to adenosine occurred when a particular nucleotide was present alone, whereas combined cell treatment with ATP and either [3H]AMP or [3H]ADP caused unexpected phosphorylation of 3H-nucleotides via the backward reactions AMP --> ADP --> ATP. The following two groups of nucleotide-converting ecto-enzymes were identified based on inhibition and substrate specificity studies: 1) ecto-nucleotidases, ATP-diphosphohydrolase, and 5'-nucleotidase; 2) ecto-nucleotide kinases, adenylate kinase, and nucleoside diphosphate kinase. Ecto-nucleoside diphosphate kinase possessed the highest activity, as revealed by comparative kinetic analysis, and was capable of using both adenine and nonadenine nucleotides as phosphate donors and acceptors. The transphosphorylation mechanism was confirmed by direct transfer of the gamma-phosphate from [gamma-32P]ATP to AMP or nucleoside diphosphates and by measurement of extracellular ATP synthesis using luciferin-luciferase luminometry. The data demonstrate the coexistence of opposite, ATP-consuming and ATP-generating, pathways on the cell surface and provide a novel mechanism for regulating the duration and magnitude of purinergic signaling in the vasculature.  相似文献   

7.
The influence of adenosine on the ribonucleotide metabolism in quiescent BALB/c 3T3 cells was studied. The cellular adenine ribonucleotides were labelled by pretreating the cells with [2-3H]-adenine. After addition of adenosine to the cell cultures, the amount and radioactivity of the cellular purine ribonucleotides and the radioactivity of the purine compounds in the medium were determined. It appeared that adenosine gave rise both to rapid catabolism of adenine ribonucleotides with inosine 5'-monophosphate (IMP) as an intermediate and to expansion of the cellular adenosine 5'-triphosphate (ATP) pool. The maximal rates and the apparent activation constants for the two processes have been determined. Experiments with varying concentrations of coformycin (an inhibitor of adenosine 5'-monophosphate [AMP] deaminase and adenosine deaminase) and of 5'-amino-5'-deoxyadenosine (an inhibitor of adenosine kinase), respectively, showed that each compound may almost completely inhibit the adenosine-induced catabolism. This effect can be obtained under conditions where there was little or no effect by the two inhibitors on the rate of expansion of the cellular ATP pool. These results may best be explained by assuming that the process of expansion of the ATP pool is independent of the induced catabolism of adenine ribonucleotides, even though both processes seem to depend on the phosphorylation of adenosine to AMP. The total increase in the pool size of ATP and of guanosine 5'-triphosphate (GTP), both caused by adenosine, seems not to have regulatory effect on adenine ribonucleotide catabolism.  相似文献   

8.
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2′-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5′-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

9.
Rat hearts were perfused simultaneously with [8-3H] AMP and [8-14C]adenosine. [8-3H] AMP was hydrolzyed by 5'-nucleotidase to produce intra- and extracellular [8-3H] adenosine. Comparison of the specific activities of [3H]- and [14C]adenosine in the heart cells with the specific activities of [3H]- and [14C]adenosine in the effluent perfusate showed that much more [3H]adenosine accumulated in the tissue than would be expected if extracellular adenosine were the immediate precursor of intracellular adenosine. Conversely, perfusion of rat hearts with [8-14C]AMP and [8-3H]adenosine led to a much greater accumulation of intracellular [14C]adenosine than would be expected from an uptake of adenosine from the perfusate. These results are interpreted to be due to hydrolysis of extracellular AMP by 5'-nucleotidase, located in the plasma membrane, and release of the resulting adenosine inside the cell. Measurements of the specific activities of 3H and 14C in ATP, ADP, AMP, and inosine support this interpretation.  相似文献   

10.
We have previously shown that extracellular ATP acts as a mitogen via protein kinase C (PKC)-dependent and independent pathways (Wang, D., Huang, N., Gonzalez, F.A., and Heppel, L.A. Multiple signal transduction pathways lead to extracellular ATP-stimulated mitogenesis in mammalian cells. I. Involvement of protein kinase C-dependent and independent pathways in the mitogenic response of mammalian cells to extracellular ATP. J. Cell. Physiol., 1991). The present aim was to determine if metabolism of arachidonic acid, resulting in prostaglandin E2 (PGE2) synthesis and elevation of cAMP levels, plays a role in mitogenesis mediated by extracellular ATP. Addition of ATP caused a marked enhancement of cyclic AMP accumulation in 3T3, 3T6, and A431 cells. Aminophylline, an antagonist of the adenosine A2 receptor, had no effect on the accumulation of cyclic AMP elicited by ATP, while it inhibited the action of adenosine. The accumulation of cyclic AMP was concentration dependent, which corresponds to the stimulation of DNA synthesis by ATP. The maximal accumulation was achieved after 45 min, with an initial delay period of about 15 min. That the activation of arachidonic acid metabolism contributed to cyclic AMP accumulation and mitogenesis stimulated by ATP in 3T3, 3T6, and A431 cells was supported by the following observations: (a) extracellular ATP stimulated the release of [3H]arachidonic acid and PGE2 into the medium; (b) inhibition of arachidonic acid release by inhibitors of phospholipase A2 blocked PGE2 production, cyclic AMP accumulation, and DNA synthesis activated by ATP, and this inhibition could be reversed by adding exogenous arachidonic acid; (c) cyclooxygenase inhibitors, such as indomethacin and aspirin, diminished the release of PGE2 and blocked cyclic AMP accumulation as well as [3H]thymidine incorporation in response to ATP; (d) PGE2 was able to restore [3H]thymidine incorporation when added together with ATP in the presence of cyclooxygenase inhibitors; (e) pertussis toxin inhibited ATP-stimulated DNA synthesis in a time- and dose-dependent fashion as well as arachidonic acid release and PGE2 formation. Other evidence for involvement of a pertussis toxin-sensitive G protein(s) in ATP-stimulated DNA synthesis as well as in arachidonic acid release is presented. In A431 cells, the enhancement of arachidonic acid and cyclic AMP accumulation by ATP was partially blocked by PKC down-regulation, implying that the activation of PKC may represent an additional pathway in ATP-stimulated metabolism of arachidonic acid. In all of these studies, ADP and AMP-PNP, but not adenosine, were as active as ATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Noradrenaline-induced accumulation of 3H-labeled inositol mono-, bis-, and trisphosphate (IP1, IP2, and IP3, respectively) in lithium-treated slices of rat cerebral cortex preincubated with [3H]inositol was potentiated by gamma-aminobutyric acid (GABA). However, the effect on [3H]IP2 accumulation was much greater than that on [3H]IP1 or [3H]IP3 accumulation. The principal effect of GABA on noradrenaline concentration-response curves for both [3H]IP1 and [3H]IP2 was to cause an increase in the maximal response attainable. However, whereas the EC50 for GABA potentiation of [3H]IP1 formation was 0.5 mM, the curve for the potentiation of [3H]IP2 formation showed a marked upturn at GABA concentrations of greater than 1 mM. Prazosin (1 microM) blocked the noradrenaline-induced formation of all three inositol phosphates (IPs), in both the presence and the absence of 2 mM GABA. 3H-IP formation induced by phenylephrine and methoxamine was also potentiated by GABA, and again the greatest effect was on [3H]IP2 accumulation. The ratio of [3H]IP2/[3H]IP1 formed in response to 100 microM noradrenaline was increased by 2 mM GABA at all times from 10 to 60 min, whereas the ratio of [3H]IP3/[3H]IP1 was little altered. The effect of GABA was not mimicked by the GABAA agonists isoguvacine and 3-aminopropanesulphonic acid and was not blocked by bicuculline methiodide. (-)-Baclofen, a GABAB agonist, did produce some stimulation of the response to noradrenaline, but to a much lesser extent than GABA. Of the agents tested, nipecotic acid came nearest to reproducing the effect of GABA, in that the major effect was on [3H]IP2 accumulation. The effects of 2 mM GABA and 2 mM nipecotic acid were not additive. GABA potentiation of noradrenaline-induced 3H-IP formation was still apparent in the absence of Li+, but the increase of [3H]IP2 content was less than that of [3H]IP1 content.  相似文献   

12.
13.
Adenosine Receptors Mediating Cyclic AMP Productioin the Rat Hippocampus   总被引:6,自引:0,他引:6  
In the transversely cut rat hippocampus, adenosine caused a dose-dependent increase in the accumulation of [3H]cyclic AMP from [3H]ATP. Adenosine breakdown products were inactive. AMP was somewhat less effective than adenosine, and its effect could be partially, but not completely, abolished by alpha, beta-methylene-ADP and GMP, which inhibited its metabolism by 5'-nucleotidase. The effect of adenosine was unaffected by inhibitors of adenosine deaminase, but enhanced by several inhibitors of adenosine uptake. Some analogues of adenosine, including N6-phenylisopropyladenosine (PIA), 2-chloroadenosine and adenosine 5'-ethylcarboxamide (NECA), were more active than adenosine, whereas others such as 2-deoxyadenosine and 9-(tetrahydro-2-furyl)adenine (SQ 22536) actually inhibited the response. The effect of PIA was highly stereospecific. The action of adenosine was inhibited by several alkylxanthines, the most potent of which was 8-phenyltheophylline. [3H]Cyclohexyladenosine (CHA) bound specifically to cell membranes from the rat hippocampus. The extent of binding was similar to that found in other cortical areas. The relative potency of some adenosine analogues and alkylxanthines to displace labelled CHA was essentially similar to their potency as effectors of the cyclic AMP system. Adenosine contributed to the cyclic AMP-elevating effect of alpha-adrenoceptor-stimulating drugs and several amino acids, but not to that seen with isoprenaline. The cyclic AMP increase seen following depolarization was only partially adenosine-dependent. The present results demonstrate that the rat hippocampus contains adenosine receptors mediating cyclic AMP accumulation and that these receptors have similar characteristics to those mediating pyramidal cell depression. Adenosine-induced cyclic AMP accumulation may be used as a biochemical correlate to electrophysiology and as a convenient parameter to assess the influence of drugs on adenosine mechanisms in the rat hippocampus.  相似文献   

14.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

15.
Adenine nucleotides displace the binding of the selective adenosine A-1 receptor ligand [3H]cyclopentyladenosine (CPA) to rat brain membranes in a concentration-dependent manner, with the rank order of activity being ATP greater than ADP greater than AMP. Binding was also displaced by GTP, ITP, adenylylimidodiphosphate (AppNHp), 2-methylthioATP, and the beta-gamma-methylene isostere of ATP, but was unaffected by the alpha-beta-methylene isosteres of ADP and ATP, and UTP. At ATP concentrations greater than 100 microM, the inhibitory effects on CPA binding were reversed, until at 2 mM ATP, specific binding of CPA was identical to that seen in controls. Concentrations of ATP greater than 10 mM totally inhibited specific binding. Inclusion of the catabolic enzyme adenosine deaminase in the incubation medium abolished the inhibitory effects of ATP, indicating that these were due to adenosine formation, presumably due to ectonucleotidase activity. The inhibitory effects were also attenuated by the alpha-beta-methylene isostere of ATP, an ectonucleotidase inhibitor. Adenosine deaminase, alpha-beta-methylene ATP (100 microM), and beta-gamma-methylene ATP (100 microM) had no effect on the "stimulatory" phase of binding, although GTP (100 microM) slightly attenuated it. Comparison of the binding of [3H]CPA in the absence and presence of 2 mM ATP by saturation analysis showed that the KD and apparent Bmax values were identical. Examination of the pharmacology of the control and "ATP-dependent" CPA binding sites showed slight changes in binding of adenosine agonists and antagonists. The responses observed with high concentrations of ATP were not observed with GTP, AppNHp, the chelating agents EDTA and EGTA, or inorganic phosphate. The divalent cations Mg2+ and Ca2+ at 10 mM attenuated the stimulatory actions of high (2 mM) concentrations of ATP, whereas EGTA and EDTA (10 mM) enhanced the "stimulatory" actions of ATP. EDTA (10 mM) abolished the inhibitory effects of ATP, indicating a specific dependence on Mg2+ for the inhibitory response. The effects of ATP on [3H]CPA binding were reversible for antagonists but not agonists. The mechanism by which ATP reverses its own inhibitory action on adenosine A-1 radioligand binding is unclear, and from the observed actions of the divalent cations and chelating agents probably does not involve a phosphorylation-dependent process.  相似文献   

16.
Infusion of adenine nucleotides and adenosine into perfused rat livers resulted in stimulation of hepatic glycogenolysis, transient increases in the effluent perfusate [3-hydroxybutyrate]/[acetoacetate] ratio, and increased portal vein pressure. In livers perfused with buffer containing 50 microM-Ca2+, transient efflux of Ca2+ was seen on stimulation of the liver with adenine nucleotides or adenosine. ADP was the most potent of the nucleotides, stimulating glucose output at concentrations as low as 0.15 microM, with half-maximal stimulation at approx. 1 microM, and ATP was slightly less potent, half-maximal stimulation requiring 4 microM-ATP. AMP and adenosine were much less effective, doses giving half-maximal stimulation being 40 and 20 microM respectively. Non-hydrolysed ATP analogues were much less effective than ATP in promoting changes in hepatic metabolism. ITP, GTP and GDP caused similar changes in hepatic metabolism to ATP, but were 10-20 times less potent than ATP. In livers perfused at low (7 microM) Ca2+, infusion of phenylephrine before ATP desensitized hepatic responses to ATP. Repeated infusions of ATP in such low-Ca2+-perfused livers caused homologous desensitization of ATP responses, and also desensitized subsequent Ca2+-dependent responses to phenylephrine. A short infusion of Ca2+ (1.25 mM) after phenylephrine infusion restored subsequent responses to ATP, indicating that, during perfusion with buffer containing 7 microM-Ca2+, ATP and phenylephrine deplete the same pool of intracellular Ca2+, which can be rapidly replenished in the presence of extracellular Ca2+. Measurement of cyclic AMP in freeze-clamped liver tissue demonstrated that adenosine (150 microM) significantly increased hepatic cyclic AMP, whereas ATP (15 microM) was without effect. It is concluded that ATP and ADP stimulate hepatic glycogenolysis via P2-purinergic receptors, through a Ca2+-dependent mechanism similar to that in alpha-adrenergic stimulation of hepatic tissue. However, adenosine stimulates glycogenolysis via P1-purinoreceptors and/or uptake into the cell, at least partially through a mechanism involving increase in cyclic AMP. Further, the hepatic response to adenine nucleotides may be significant in regulating hepatic glucose output in physiological and pathophysiological states.  相似文献   

17.
Binding of native adenine nucleotides to rat liver and adipose plasma membranes was studied under steady-state conditions using EDTA/Na for inhibition of ecto-nucleotidase activity. [3H]-labelled ATP, ADP and AMP are able to interact with specific binding sites with respective Kd values of 88 +/- 9, 278 +/- 29 and 495 +/- 40 nmol/l for liver membranes; and of 64 +/- 7, 231 +/- 36 and 2050 +/- 290 nmol/l for adipose membranes. The nucleotide-binding capacity (Bmax) varied from 15 to 18 pmol/mg protein in the case of [3H]ATP and [3H]ADP-binding studies and from 22 to 26 pmol/mg protein for [3H]AMP-binding sites. Both 2-MeSATP and ADP inhibited [3H]ATP-binding to membranes with respective IC50 values of 60 +/- 7 and 285 +/- 30 nM. Other purinergic agents suramin, Reactive blue 2, alpha,beta-MeATP and beta,gamma-MeATP were less potent competitors of [3H]ATP binding, whereas AMP, adenosine, GTP, UTP, and CTP did not cause any displacement effect at concentrations of 10(-6)-10(-5) M. It is suggested that the described ATP/ADP-binding sites are linked to G protein-coupled P2Y receptors, whereas AMP-binding sites may represent a substrate-binding component of the membrane ecto-5'-nucleotidase.  相似文献   

18.
Release of Purines from Postsynaptic Structures of Amphibian Ganglia   总被引:5,自引:5,他引:0  
Isolated sympathetic paravertebral ganglia of the frog were incubated for 1 h with [3H]adenosine. Then, after washout of excess label, the contribution of pre- and post-synaptic activation on the release of 3H-labeled purines was studied. The ganglion was superfused with Ringer's solution at room temperature, and extracellular electrodes were used for stimulation and recording. Preganglionic stimulation enhanced overall release of 3H-labeled purines. At rest, the release of 3H-labeled purines per minute represented 0.62 +/- 0.02% of the total 3H-label in the ganglion, and this fraction increased depending on the frequency of orthodromic stimulation. Analyses of the effluent from resting and stimulated ganglia showed that in both cases the nonnucleotide fractions constituted greater than 97% of the total counts in the medium: adenosine (58.4 +/- 10.1%); inosine (31.7 +/- 12.9%); hypoxanthine (7.1 +/- 2.4%); and AMP, ADP, and ATP together (1.6 +/- 0.9%) (n = 11). Nucleotides were released, but their levels were not increased significantly during stimulation. Inclusion of ectophosphatase inhibitors slightly enhanced nucleotide release (from 1.1 +/- 0.5 to 1.8 +/- 0.7%; n = 5) but did not alter the amount of nucleosides. Hence, nucleosides are the main products released by the ganglion and do not arise from hydrolysis of extracellular ATP. Preganglionic stimulation enhanced release of labeled purines, which was frequency dependent from 1 to 20 Hz. Atropine (2 microM) and tubocurarine (150 microM) totally blocked the release of 3H-labeled purines associated with preganglionic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.  相似文献   

20.
Free cytosolic adenylates were examined in relation to adenosine plus inosine released from perfused working guinea-pig hearts. Whole-tissue adenylate data from freeze-clamped hearts were quantitatively compared with corresponding values obtained by subcellular fractionation of homogenized myocardium in non-aqueous media. Adenosine and inosine in venous cardiac effluents were measured by high-performance liquid chromatography. Hearts, perfused at their natural flows, were subjected to various workloads, substrates and catecholamines to alter myocardial energy metabolism and respiration over a wide physiological range. Non-aqueous cytosolic ATP and creatine phosphate (CrP) accounted for more than 80% of the respective total myocardium content. The cytosolic CrP/Pi ratio was in near-quantitative agreement with the overall tissue CrP/Pi ratio when the latter parameter was corrected for extracellular Pi. This was conclusive evidence that ATP, CrP and Pi were predominantly located in the cytosol of the well-oxygenated cardiomyocyte. Measured myocardial oxygen uptake (MVO2) was reciprocally related to the phosphorylation state of CrP [( CrP]/[Cr] X [Pi]) and hence that of ATP [( ATP]/[ADP] X [Pi]) assuming the creatine kinase at near-equilibrium at a near-constant pH of 7.2. On the other hand, calculated mean free cytosolic ADP concentrations increased essentially linearly up to threefold with increasing MVO2 in the presence of virtually unchanged or only slightly decreased ATP levels; this was found both according to the whole tissue and the special subcellular fractionation data. Employing the myokinase mass-action ratio and substituting total cardiac ADP by the mean free cytosolic ADP concentrations, the mean free cytosolic AMP concentrations proved to be in the nanomolar range, i.e. up to three orders of magnitude lower than the overall tissue AMP content. We propose, therefore, that in the normoxic heart, AMP is located predominantly in the mitochondrial compartment. Nevertheless, both free cytosolic AMP concentration and release of adenosine plus inosine were apparently square or even higher-power functions of the rate of cardiac respiration. On the other hand, the mean purine nucleoside release seemed linearly correlated (r = 0.920) with the calculated free cytosolic AMP concentration. Our observations seem to suggest that the concentrations of free ADP and AMP in the cytosol are major determinants of the production of inosine and coronary vasodilator adenosine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号