首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of sulfate by yeast requires the presence of a metabolic substrate and is dependent on the time during which the cells have been metabolizing in the absence of sulfate. At low concentrations of sulfate, uptake can be described by simple saturation kinetics. Uptake of sulfate is accompanied by a net proton influx of 3 H+ and an efflux of 1 K+ for each sulfate ion taken up. Divalent cations stimulate sulfate uptake at low concentrations of sulfate; the maximal rate of uptake is not significantly affected but Km is lowered. Stimulation by divalent cations shows an optimum at a cation concentration of about 4 mM. Monovalent cations are less effective, trivalent cations are more effective in stimulating sulfate uptake. The results are qualitatively in accordance with the notion, that the effect of cations is due to an effect via the surface potential.  相似文献   

2.
Multiphasic Uptake of Sulfate by Barley Roots   总被引:2,自引:0,他引:2  
Uptake of sulfate by excised barley roots increases upon their washing in aerated water or dilute CaCl2 solutions. Washing increases the values for Vmax and the sulfate concentrations required for transition between the lower phases, but the KM-values remain essentially constant. At low sulfate concentrations, phase transitions do not occur in the absence of calcium or other divalent cations. These ions are about equally effective in enhancing short-term sulfate uptake. Phase transitions were not principally altered by sulfhydryl or protein reagents. These concentration-dependent transitions appear unrelated to temperature-dependent phase transitions as evidenced by similar multiphasic patterns at low and high temperature.  相似文献   

3.
The effect of bivalent cations on phosphate uptake by Saccharomyces cerevisiae was investigated. Phosphate uptake via the Na+-dependent transport system at pH 7.2 is stimulated by bivalent cations. The apparent affinity of phosphate for the transport mechanism is increased, but the apparent affinity for Na+ is decreased. Uptake of phosphate via the Na+-independent transport system is accompanied by a net proton influx of 2H+ and an efflux of 1 K+ for each phosphate ion taken up. At pH 4.5 phosphate uptake via the Na+-independent system is stimulated by bivalent cations, whereas at pH 7.2 uptake is inhibited. The effect of bivalent cations on phosphate uptake can be ascribed to a decrease in the surface potential.  相似文献   

4.
Molybdate transport through the plant sulfate transporter SHST1   总被引:1,自引:0,他引:1  
Molybdenum is an essential micronutrient required by plants. The mechanism of molybdenum uptake in plants is poorly understood, however, evidence has suggested that sulfate transporters may be involved. The sulfate transporter from Stylosanthes hamata, SHST1, restored growth of the sulfate transport yeast mutant, YSD1, on media containing low amounts of molybdate. Kinetic analysis using 99MoO4(2-) demonstrated that SHST1 enhanced the uptake of molybdate into yeast cells at nM concentrations. Uptake was not inhibited by sulfate, but sulfate transport via SHST1 was reduced with molybdate. These results are the first measurement of molybdate transport by a characterised plant sulfate transport protein.  相似文献   

5.
Cadmium uptake by cells of renal origin   总被引:2,自引:0,他引:2  
We compared the ability of rat glomerular mesangial cells and LLC-PK1 cells to take up Cd2+ from solution. The former are smooth muscle-like cells of mesenchymal origin, the latter an established line of proximal tubular epithelium. Both cells, as well as primary glomerular epithelia, accumulated Cd2+ against a concentration gradient in a time-dependent manner. Uptake by mesangial cells obeyed a Michaelis model with an apparent Km of 19 microM and could be described by an initial rapid step of surface binding followed by rate-limiting internalization. In contrast, uptake by LLC-PK1 cells was non-saturable under accessible concentrations of Cd2+ and internalization was not a necessary consequence of association with the cell surface. In several other cell types, Cd2+ uptake has been shown to be inhibited by blockage of cell-surface sulfhydryl groups. In contrast, uptake by neither mesangial nor LLC-PK1 cells was depressed by N-ethylmaleimide, which actually enhanced the surface binding and to a lesser extent the uptake by the LLC-PK1 cell line. Neither depended on metabolic energy for uptake or utilized Ca2+ channels. The internalization process was temperature dependent and was obliterated at 2 degrees C. In mesangial cells, this allowed direct observation of the internalization event from a presaturated surface pool. The rate of this process was consistent with the Vmax calculated from the Michaelis model. Surface binding and uptake were decreased by binding of Cd2+ to serum proteins and albumin and were much less dependent on the presence of low molecular weight components of serum. Therefore, these cells may be especially sensitive to Cd2+ at concentrations encountered in vivo because of the low protein content of the plasma ultrafiltrate. Surface binding of Cd2+ to mesangial cells was suppressed by competing divalent ions following the order of the Irving-Williams series (Mn less than Co less than Ni less than Cu greater than Zn), although Zn2+ showed the greatest effect on internalization. In LLC-PK1 cells, Zn2+ and Cu2+ were both effective in decreasing Cd2+ uptake. We conclude that Cd2+ uptake by the tubular epithelial cells is rapid and independent of specific cell surface interactions, whereas uptake by rat mesangial cells follows binding to a specific surface ligand saturating at about 1.5 x 10(7) copies/cell. In both types of cells the uptake appears quite specific for Cd2+ and shows some cross-reactivity with other metal cations explicable by competitive ligand binding.  相似文献   

6.
For sulfate uptake by barley roots, competition studies reveal that uptake and phase transitions are caused by interaction of ions with separate sites on or in the plasmalemma. Uptake is competitively, and unequally, inhibited by sulfate analogues but not by other divalent anions. In contrast, divalent phosphate and di- and trivalent pyrophosphate are equally effective in causing transitions. Phosphate is taken up mainly or entirely as H2PO4? by a similar but separate multiphasic mechanism. At pH 8, sulfate uptake is mediated by fewer phases than at low and intermediate pH.  相似文献   

7.
Sodium and rubidium uptake in cells transformed by Rous sarcoma virus   总被引:1,自引:0,他引:1  
Rates of uptake and intracellular concentrations of monovalent cations were measured in virus-transformed and nontransformed chick embryo (CE) cells. Uptake of 22Na+ into cells transformed by the BH strain of Rous sarcoma virus (RSV-BH) (CE-BH) was about double the rate of uptake into CE cells, or cells transformed by the Schmidt-Ruppin strain (RSV-SR): CE-SR. Likewise, the rate of efflux of 22Na+ was greater in CE-BH cells than in CE or CE-SR cells. The greater permeability of CE-BH cells to Na+ was apparent in higher intracellular Na+ concentrations. Experiments with cells exhibiting temperature-dependent transformation showed that new RNA and protein synthesis was a requirement for the acquisition of increased Na+ permeability, suggesting that the change is an indirect effect of the virus-coded transformation-inducing protein. Rates of 86Rb+ uptake, used as a measure of K+ influx, were indistinguishable in CE, CE-BH, and CE-SR cells. Also, equilibrium intracellular levels of 86Rb+ were similar in transformed and nontransformed cells, as were observed concentrations of K+. Also, no differences in ATPase activity, as indicated by ouabain binding or temperature sensitivity, were observed. We conclude that monovalent cations play no direct role in RSV-induced transformation, although the higher levels of Na+ in CE-BH cells may be responsible for other distinguishing biochemical features of these cells.  相似文献   

8.
Uptake and transport of sulfate labelled with 35S have been determined in wheat at varying mannitol concentration in the medium. The magnitude of the apparent free space (AFS) of the roots from decapitated plants was constant up to incipient plasmolysis where the AFS values increased abruptly due to the entrance of the medium into the cell lumen. The sulfate retention of the roots from decapitated plants and from intact plants at a low water uptake increased at non-plasmolysing mannitol concentrations but fell abruptly at plasmolysis. The retention including the increase at mannitol addition seemed to be effected by an active process. The sulfate transport to the shoot was also increased at a low, practically constant water uptake at the addition of non-plasmolysing mannitol concentrations. At transpiration-stimulating conditions the sulfate transport was almost constant while the water uptake was sinking. This apparent constancy depended on a composed effect of the mannitol addition. A non-plasmolysing concentration in itself tended to increase the sulfate transport and the simultaneously lowered water uptake diminished it. The increase of the sulfate transport to the shoot before plasmolysis in the root seemed to involve stimulation of an active process. A passive mass flow directly from the medium to the shoot could be shown to occur only at a very limited extent or not at all. The concentration of such a flow as compared with unity concentration of the medium was calculated to be maximally 0.03. After plasmolysis in the root the transport seemed to be entirely a mass flow indicating that a diffusion barrier could now be passed by the sulfate. Endodermis is suggested to be this barrier. The concentration of the mass flow was lower than the medium concentration indicating that the endodermis was only partly broken. The effect of a non-plasmolysing mannitol concentration increasing both the sulfate retention of the root and the sulfate transfer to the shoot cannot be explained but some possibilities are discussed. An explanation by a structural change of the free space is favoured.  相似文献   

9.
Abstract: Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca2+-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 µg/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20–80 µM) it stimulates the rate of Ca2+ influx, and at concentrations >100 µM it inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca2+-ATPase; for the Ca2+-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50–150 µM), and this effect is potentiated by heparin (10 µg/ml), even in the presence of KCl. It is proposed that the Ca2+-ATPase isoform from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms.  相似文献   

10.
Radioactive calcium uptake by suspensions of washed boar and human spermatozoa was inhibited by the mitochondrial uncoupling agent carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP). Theophylline + dibutyryl cyclic AMP also inhibited calcium uptake in the presence or absence of FCCP. Uptake of low concentrations of calcium (0 . 1 mM) was inhibited by the calcium ionophore A23187, but at high calcium concentrations the ionophore stimulated calcium uptake. These observations are explained in terms of a mechanism for the regulation of calcium uptake in spermatozoa based on competing mitochondrial and plasma membrane pumps. Uptake of 32P was also inhibited. These effects provide evidence that cyclic AMP plays a role in the transport of ions across the plasma membrane of spermatozoa.  相似文献   

11.
The kinetics of sulfobromophthalein uptake by rat liver sinusoidal vesicles   总被引:3,自引:0,他引:3  
The kinetics of bromo[35S]sulfophthalein (35S-BSP) binding by and uptake across the hepatocyte sinusoidal membrane were investigated using isolated rat liver sinusoidal membrane vesicles containing K+ as the principal internal inorganic cation. Uptake of 35S-BSP into vesicles was found to be temperature dependent, with maximum uptake between 35 and 40 degrees C; only binding occurred at or below 15 degrees C. Uptake at 37 degrees C was saturable and resolvable by Eadee-Hofstee analysis into two components: one with high affinity (Km = 53.1 microM) but low capacity, and the second of low affinity (Km = 1150 microM) but high capacity. By pre- or post-incubation, respectively, with unlabelled BSP, trans-stimulation and counter transport of 35S-BSP could also be demonstrated in these vesicles. Uptake was inhibited competitively using 5 microM Rose bengal and 10 microM indocyanine green, and non-competitively using 10 microM DIDS. Taurocholate did not inhibit uptake, and actually enhanced transport at concentrations greater than or equal to 250 microM. Imposition of inwardly directed inorganic ion gradients resulted in the enhancement of 35S-BSP transport when chloride ions were part of this gradient, irrespective of the cation employed whereas there was no apparent cation effect. However, substitution of 10 mM Na+ for 10 mM K+ as the internal cation resulted in a significant increase in uptake in the presence of external K+ as compared to Na+ gradients. This effect was not observed when 10 mM Tris+ was employed as the internal cation. The kinetics of 35S-BSP uptake by isolated sinusoidal membrane vesicles are indicative of facilitated transport. While the observed inorganic ion effects suggest a possible electrogenic component, the driving forces for hepatic BSP uptake remain uncertain. Isolated sinusoidal membrane vesicles provide a useful technique for studying hepatic uptake processes independent of circulatory or subsequent cellular phenomena.  相似文献   

12.
Uptake of methotrexate into the LNCaP human prostate cancer cells was linear for the first 60 min. The initial rate of methotrexate uptake was highest at extracellular pH 4.5 and decreased markedly until pH 7.0 to 8.0. Transport of methotrexate into LNCaP cells showed two components, one saturable -K(m) = 0.13 +/- 0.06 microM and V(max) = 1.20 +/- 0.16 pmol x 45 min(-1) x mg(-1) protein at low concentrations and the other apparently not saturable up to 10 microM. Uptake of methotrexate was inhibited by structural analogs with the K(i) values being 6.53, 12.4, and 85.6 microM for 5-formyltetrahydrofolate, 5-methyltetrahydrofolate, and folic acid, respectively. Uptake of methotrexate into LNCaP cells was not inhibited by the energy poisons in contrast to methotrexate uptake into PC-3 prostate cancer cells. Uptake was inhibited by increasing concentrations of sulfate and phosphate ions and by the organic anions probenecid and DIDS, suggesting that methotrexate may be transported by an anion-exchange mechanism. These results show that methotrexate is transported into LNCaP prostate cancer cells by a carrier-mediated process.  相似文献   

13.
A method was developed for direct assessment of changes in cytoplasmic volume and permeability of plasma membranes of intact cells to divalent cations. This technique, which ultilized an amphipathic spin label partitioning between intracellular aqueous and hydrophobic environments, allowed estimates of the proportion of cells in a homogenous population sustaining membrane damage associated with Ni+2 and water permeability and the rate at which such damage was induced. Several specific effects of cationic and anionic surfactants on the macroconidial plasma membranes of Fusarium sulphureum Schlect (isolate 1) were distinguished on the basis of detergent concentration and charge. The induction of water uptake by the cells was found to be an effect of dodecylguanidine acetate (Dodine), a cationic fungicide, at low concentration. At higher concentrations (greater than 5 X 10(-5) M) both the impermeability of the plasma membrane to divalent cations and the ability to accumulate actively L-phenylalanine were lost irreversibly and cell lysis occurred above 5 X 10(-4) M. Sodium dodecyl sulfate eliminated divalent cation impermeability more rapidly than Dodine but was less effective in inhibiting active transport function. An antagonistic effect between cationic and anionic detergents was observed.  相似文献   

14.
Amine uptake into intact mast cell granules in vitro   总被引:1,自引:0,他引:1  
R I Ludowyke  D Lagunoff 《Biochemistry》1986,25(20):6287-6293
Histamine, the principal amine of rat peritoneal mast cells, is taken up into isolated granules with intact membranes. Uptake is pH- and concentration-dependent and is not stimulated by the addition of Mg2+-ATP. The saturable uptake has a Km of 91.1 microM and a Vmax of 95.4 pmol (mg of protein)-1 min-1. Uptake is abolished by 5 mM ammonium ion. 5-HT, the other endogenous amine of the granules, and dopamine and tyramine, which do not occur naturally in rat mast cells, each competitively inhibits [3H]-histamine uptake with Ki's close to 1 microM. Reserpine, a putative amine carrier blocker, inhibits uptake at nanomolar concentrations. At high concentrations, uptake of [3H]-5-HT is nonsaturable; at low concentrations, a saturable component is observed with a Km of 1.6 microM. Uptake of [3H]-5-HT is not enhanced by Mg2+-ATP. It is pH-dependent but with a lower apparent pKa than that of histamine. [3H]-5-HT uptake can be completely inhibited by ammonium ions. Amine inhibition of [3H]-5-HT gives nonlinear Dixon plots, and high concentrations of the competing amines or reserpine cannot completely block uptake. We propose a model consistent with these results in which amine uptake occurs by several distinct saturable transport systems. According to the model, histamine is transported by a single system, which also transports 5-HT and dopamine. 5-HT and dopamine are transported by one or more other systems.  相似文献   

15.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

16.
Dijkshoorn  W.  Sujitno  J. S. A.  Ismunadji  M. 《Plant and Soil》1974,40(3):525-534
Summary Rice plants were grown in nutrient solutions in which the K supply was varied by stepwise substitution of Na, Mg, or Ca. Curves relating concentrations in the tissues to those in the root medium showed that K uptake depressed the transfer of Na, Mg, and Ca into the shoots even when supplies of the latter were raised at the expense of K. Only when K was depleted did the other cations substitute for K in the shoots with little change in the total cation concentration in the tissue. Uptake appears to be controlled by a single system in which the 4 cations compete for uptake sites and K was the most effective competitor. re]19730507  相似文献   

17.
The effects of monovalent cations on calcium uptake by fragmented sarcoplasmic reticulum have been clarified. Homogenization of muscle tissue in salt-containing solutions leads to contamination of this subcellular fraction with actomyosin and mitochondrial membranes. When, in addition, inorganic cations are contributed by the microsomal suspension and in association with nucleotide triphosphate substrates there is an apparent inhibition of the calcium transport system by potassium and other cations. However, when purified preparations were obtained after homogenization in sucrose medium followed by centrifugation on a sucrose density gradient in a zonal rotor, calcium uptake and the associated adenosine triphosphatase activity were considerably activated by potassium and other univalent cations. When plotted against the log of the free calcium concentration there was only a slight increase in calcium uptake and ATPase activity in the absence of potassium ions but sigmoid-shaped curves were obtained in 100 mM K+ with half-maximal stimulation occurring at 2 muM Ca2+ for both calcium uptake and ATPase activity. The augmentation in calcium uptake was not due to an ionic strength effect as Tris cation at pH 6.6 was shown to be inactive in this respect. Other monovalent cations were effective in the order K+ greater than Na+ greater than NH4+=Rb+=Cs+ greater than Li+ with half-maximal stimulation in 11 mM K+, 16 mM Na+, 25 mM NH4+, Rb+, and Cs+ and in 50 mM Li+. There was nos synergistic action between K+ AND Na+ ions and both calcium uptak and associated ATPase were insensitive to ouabain. Thallous ions stimulate many K+-requiring enzymes and at one-tenth the concentration were nearly as effective as K+ ions in promoting calcium uptake. The ratio of Ca2+ ions transported to P1 released remained unchanged at 2 after addition of K+ ions indicating an effect on the rate of calcium uptake rather than an increased efficiency of uptake. In support of this it was found that during the stimulation of calcium uptake by Na+ ions there was a reduction in the steady state concentration of phosphorylated intermediate formed from [gamma-32P]ATP. It is considered that there is a physiological requirement for potassium ions in the relaxation process.  相似文献   

18.
Abstract Sulfate uptake was investigated with four species of phototrophic sulfur bacteria. Rhodobacter sulfidophilus and Chromatium vinosum took up 35S-labeled sulfate added in micromolar concentrations. Sulfate uptake by C. vinosum was expressed only under sulfate starvation. R. sulfidophilus took up 10 μM sulfate almost completely and accumulated it up to 5300-fold, also when grown with excess sulfate. Sulfite (1 mM) as an intermediate of sulfate assimilation inhibited sulfate uptake completely within 1 min. Moderate inhibition was observed with cysteine (1 mM) and none with sulfide (1 mM). Transport was not dependent on the cations K+, Na+, Li+ or protons, but was sensitive to uncouplers and to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). The accumulation of sulfate correlated with the ATP concentration in the cells, indicating an ATP-dependent uptake mechanism.  相似文献   

19.
Confluent monolayer cultures of the Madin-Darby canine kidney (MDCK) cell line have been shown to possess a furosemide and bumetanide-sensitive (Na+,K+)-cotransport system. We have studied the effect of anion substitutions on (Na+,K+)-cotransport. In Na+-depleted cells, bumetanide-sensitive uptake of 22Na+ or 86Rb+ exhibited an absolute requirement for extracellular Cl-. Chloride could be replaced in the buffers by Br-, but not by F-, I-, acetate, nitrate, thiocyanate, sulfate, or gluconate. The effect of Cl- was saturating, and Na+-stimulated 86RB+ uptake as well as K+-stimulated 22Na+ uptake was shown to be dependent on the square of the Cl- concentration. The concentration of Cl- which gave half-maximal stimulation of cation cotransport varied between 58 and 70 mM. There was a small degree of cooperativity between the binding affinities for Cl- and K+ at constant Na+ concentrations. Bumetanide-sensitive 36Cl- uptake could be demonstrated when extracellular Na+ and K+ were present simultaneously. Uptake through this system was unaffected by changes in the membrane potential or by the imposition of pH gradients. Together these data strongly suggest that the bumetanide-sensitive transport system in Madin-Darby canine kidney cells co-transports Na+, K+, and Cl- in a ratio of 1:1:2.  相似文献   

20.
—Uptake of acetylcholine (ACh) in mouse brain cortex slices, previously shown with ACh synthesized from tritiated choline is confirmed with acetyl[1-14C]choline. Radioactivity from tritiated sodium acetate also accumulates in slices, but forms hardly any ACh. Uptake of ACh increases in a Ca2+-free medium, decreases again upon addition of a 3 × 105 molar concentration of an anticholinergic benzilate compound and is completely blocked by the same compound at 3 × 103 m. Slices preloaded with labelled ACh release, after extensive washing, some of their radioactivity into an outer medium free from ACh. Phospholipase, A or C, increases the release of radioactivity from the slices. An equilibrium is reached both with controls and phospholipase-treated slices. Remaining radioactivity seems to be due to bound ACh. Calcium and magnesium ions have no effect on the uptake of tritiated atropine, although low concentrations of Ca2+ decrease the effects of phospholipase C on atropine uptake. The inhibitory effect of K+ on atropine uptake disappears completely after treatment with small amounts of phospholipase A, but even high concentrations of phospholipase C have no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号