首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The attachment of virulent strains of Agrobacterium tumefaciens to plant cells is the first step in the bacterial induction of tumors. Binding of A. tumefaciens to carrot tissue culture cells occurred as a two-step process. The initial step was the attachment of the bacteria to the plant cell wall. Living plant cells were not required. Bacterial attachment to heat-killed or glutaraldehyde-fixed carrot cells proceeded with only slightly altered kinetics and unaltered bacterial strain specificity. After the bacteria bound to the carrot cell surface, scanning electron microscopy showed that fibrils developed, surrounded the bacteria, and anchored them to the plant cell surface. These fibrils were synthesized by the bacteria and not by the plant cell since they were also made after the attachment of A. tumefaciens to dead carrot cells and since under some conditions the bacteria synthesized fibrils in the absence of plant cells. Calcofluor staining, acid hydrolysis, enzymatic digestion studies, and infrared spectroscopy showed that the fibrils were composed of cellulose. The formation of these cellulose fibrils occurred during the attachment of virulent strains of A. tumefaciens to plant cells in vitro. The fibrils anchored the bacteria to the plant cell surface and entrapped additional bacteria. The multiplication of entrapped and attached bacteria resulted in the formation of large clusters of bacteria held close to the plant cell wall and plasma membrane by cellulose fibrils. This high concentration of bacteria may facilitate transfer of Ti plasmid deoxyribonucleic acid to the plant cell resulting in the formation of tumors.  相似文献   

2.
Characterization of nonattaching mutants of Agrobacterium tumefaciens.   总被引:31,自引:17,他引:14       下载免费PDF全文
The first step in tumor formation by Agrobacterium tumefaciens is the site-specific binding of the bacteria to plant host cells. Transposon mutants of the bacteria which fail to attach to carrot suspension culture cells were isolated. These mutants showed no significant attachment to carrot cells with either microscopic or viable cell count assays of bacterial binding. The nonattaching mutants were all avirulent. When revertants of the mutants were obtained by enriching for bacteria which do bind to carrot cells, the bacteria were found to have regained the ability to bind to carrot cells and virulence simultaneously. These results suggest that the ability of the bacteria to bind to plant cells is required for virulence. Like the parent strain, all of the nonattaching mutants synthesized cellulose, but unlike the parent strain, they failed to aggregate carrot suspension culture cells. The transposon Tn5, which was used to obtain the mutants, was located on a 12-kilobase EcoRI fragment of the bacterial chromosomal DNA in all of the nonattaching mutants from strain C58. That the mutant phenotype was due to the Tn5 insertion was shown by cloning the Tn5-containing DNA fragment from the mutant bacteria and using it to replace the wild-type fragment in the parent strain by marker exchange. The resulting bacteria had the same mutant phenotype as the original Tn5 mutants; they did not attach to carrot cells, they did not cause the aggregation of carrot cells, and they were avirulent. No difference was seen between the parent strain and the nonattaching mutants in hydrophobicity, motility, flagella, fimbriae, beta-2-glucan content, size of lipopolysaccharide, or ability of the lipopolysaccharide to inhibit bacterial attachment to tissue culture cells. Differences were seen between the parent strain and the nonattaching mutants in the polypeptides removed from the bacteria during the preparation of spheroplasts. Three of the mutants were lacking a polypeptide of about 34 kilodaltons (kDa). One mutant was lacking the 34-kDa polypeptide and another polypeptide of about 38 kDa. The fifth mutant was lacking a polypeptide slightly smaller than the 34-kDa polypeptide missing in the other four mutants. These missing polypeptides all reappeared in the revertants of the mutants. Thus, bacterial binding to plant cells appears to require the presence of these polypeptides.  相似文献   

3.
Agrobacterium rhizogenes mutants that fail to bind to plant cells.   总被引:3,自引:1,他引:2       下载免费PDF全文
Transposon insertion mutants of Agrobacterium rhizogenes were screened to obtain mutant bacteria that failed to bind to carrot suspension culture cells. A light microscope binding assay was used. The bacterial isolates that were reduced in binding to carrot cells were all avirulent on Bryophyllum diagremontiana leaves and on carrot root disks. The mutants did not appear to be altered in cellulose production. The composition of the medium affected the ability of the parent and mutant bacteria to bind to carrot cells. The parent strain bound to carrot cells in greatest numbers in low-ionic-strength media such as 4% sucrose but still showed significant binding in Murashige-Skoog tissue culture medium. All of the mutants showed reduced binding in 4% sucrose after 2 h of incubation with carrot cells. One mutant was delayed in binding in 4% sucrose. This mutant and one other mutant also showed reduced binding to carrot cells in Murashige-Skoog medium. To determine whether the Tn5 insertion was responsible for the mutant phenotype, DNA containing the Tn5 insertion was cloned from the mutant bacteria and used to introduce Tn5 into the parent strain in the same location as in the original mutant by marker exchange. The resulting transconjugants had the same avirulent, nonattaching phenotype as the original mutants, suggesting that the mutant phenotype was due to the Tn5 insertion. The cloned DNA containing the Tn5 insertion was also tested for homology to DNA of known genes that affect attachment of Agrobacterium tumefaciens to plant cells by DNA hybridization. No homology to chv, att, or pscA clones was observed. In addition, cloned chv, att, and pscA genes from A. tumefaciens were unable to complement the attachment-minus A. rhizogenes mutants. Thus, the A. rhizogenes nonattaching mutants appear to be different from the previously described A. tumefaciens mutants.  相似文献   

4.
Five weeks after the in vivo inoculation of potatoes ( Solanum tuberosum L.) with Agrobacterium. tumefaciens strain B6S3, bacteria were found in the non-differentiated cells of tumors (formed from xylem parenchyma or other living cells), in xylem cells at the site of inoculation, as well as in xylem cells of the adjacent stem.
Bacteria were attached by fibrillar aggregates to the tumor cell walls. They were also attached to a fibrillar mass which arose from agrobacteria connected to this mass in the tumor. Agrobacteria, singly or in pairs, were attached to an electron dense formation (possibly bacterial extracellular polysaccharides) found both inside the xylem cells of the stem adjacent to the tumor and at the site of inoculation. Some A. tumefaciens cells were attached by means of a pedestal-like structure at the inoculation site.
A possible function of the different means of attachment of A. tumefaciens in both nontransformed plant cells and tumors is discussed.  相似文献   

5.
We have identified a new virulence locus in Agrobacterium tumefaciens. Strains carrying Tn5 inserts at this locus could not incite tumors on Kalanchoe daigremontiana, Nicotiana rustica, tobacco, or sunflower and had severely attenuated virulence on carrot disks. We termed the locus pscA, because the mutants that defined the locus were initially isolated as having an altered polysaccharide composition; they were nonfluorescent on media containing Leucophor or Calcofluor, indicating a defect in the production of cellulose fibrils. Further analysis showed that the pscA mutants produced little, if any, of the four species of exopolysaccharide synthesized by the wild-type strain. DNA hybridization analysis and genetic complementation experiments indicated that the pscA locus is not encoded by the Ti plasmid and that it is distinct from the previously described chromosomal virulence loci chvA and chvB. However, like chvA and chvB mutants, the inability of the pscA mutants to form tumors is apparently due to a defect in plant cell attachment. Whereas we could demonstrate binding of the wild-type strain to tobacco suspension cells, attachment of the pscA mutants was drastically reduced or completely absent.  相似文献   

6.
Agrobacterium tumefaciens growing in liquid attaches to the surface of tomato and Arabidopsis thaliana roots, forming a biofilm. The bacteria also colonize roots grown in sterile quartz sand. Attachment, root colonization, and biofilm formation all were markedly reduced in celA and chvB mutants, deficient in production of cellulose and cyclic beta-(1,2)-D-glucans, respectively. We have identified two genes (celG and cell) in which mutations result in the overproduction of cellulose as judged by chemical fractionation and methylation analysis. Wild-type and chvB mutant strains carrying a cDNA clone of a cellulose synthase gene from the marine urochordate Ciona savignyi also overproduced cellulose. The overproduction in a wild-type strain resulted in increased biofilm formation on roots, as evaluated by light microscopy, and levels of root colonization intermediate between those of cellulose-minus mutants and the wild type. Overproduction of cellulose by a nonattaching chvB mutant restored biofilm formation and bacterial attachment in microscopic and viable cell count assays and partially restored root colonization. Although attachment to plant surfaces was restored, overproduction of cellulose did not restore virulence in the chvB mutant strain, suggesting that simple bacterial binding to plant surfaces is not sufficient for pathogenesis.  相似文献   

7.
Transposon mutants of Agrobacterium tumefaciens which were avirulent and unable to attach to plant cells were isolated and described previously. A clone from a library of Agrobacterium tumefaciens DNA which was able to complement these chromosomal att mutants was identified. Tn3HoHo1 insertions in this clone were made and used to replace the wild-type genes in the bacterial chromosome by marker exchange. The resulting mutants were avirulent and showed either no or very much reduced attachment to carrot suspension culture cells. We sequenced a 10-kb region of this clone and found a putative operon containing nine open reading frames (ORFs) (attA1A2BCDEFGH). The second and third ORFs (attA2 and attB) showed homology to genes encoding the membrane-spanning proteins (potB and potH; potC and potI) of periplasmic binding protein-dependent (ABC) transport systems from gram-negative bacteria. The homology was strongest to proteins involved in the transport of spermidine and putrescine. The first and fifth ORFs (attA1 and attE) showed homology to the genes encoding ATP-binding proteins of these systems including potA, potG, and cysT from Escherichia coli; occP from A. tumefaciens; cysA from Synechococcus spp.; and ORF-C from an operon involved in the attachment of Campylobacte jejuni. The ability of mutants in these att genes to bind to host cells was restored by addition of conditioned medium during incubation of the bacteria with host cells.  相似文献   

8.
Infections of dicotyledonous plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. Attachment of the bacteria to plant host cells is required for tumor formation. Human vitronectin and antivitronectin antibodies both inhibited the binding of A. tumefaciens to carrot cells. Wild-type bacteria are able to bind radioactive vitronectin; nonattaching mutants showed a reduction in the ability to bind vitronectin. The binding of biotype 1 A. tumefaciens to carrot cells or to radioactive vitronectin was not affected by high ionic strength. Detergent extraction of carrot cells removed the receptor to which the bacteria bind. The extract was found to contain a vitronectin-like protein. These results suggest that A. tumefaciens utilizes a vitronectin-like protein on the plant cell surface as the receptor for its initial attachment to host cells.  相似文献   

9.
Cellulose-minus mutants of Agrobacterium tumefaciens retain virulence but can be removed from wound sites by washing with water. Washing of Bryophyllum diagremontiana leaves inoculated with a cellulose-minus mutant was used to determine the minimum time the bacteria must be present for tumor induction. This time was 4 to 8 h.  相似文献   

10.
Cellulose-minus mutants of Agrobacterium tumefaciens retain virulence but can be removed from wound sites by washing with water. Washing of Bryophyllum diagremontiana leaves inoculated with a cellulose-minus mutant was used to determine the minimum time the bacteria must be present for tumor induction. This time was 4 to 8 h.  相似文献   

11.
Root colonization by Agrobacterium tumefaciens was measured by using tomato and Arabidopsis thaliana roots dipped in a bacterial suspension and planted in soil. Wild-type bacteria showed extensive growth on tomato roots; the number of bacteria increased from 103 bacteria/cm of root length at the time of inoculation to more than 107 bacteria/cm after 10 days. The numbers of cellulose-minus and nonattaching attB, attD, and attR mutant bacteria were less than 1/10,000th the number of wild-type bacteria recovered from tomato roots. On roots of A. thaliana ecotype Landsberg erecta, the numbers of wild-type bacteria increased from about 30 to 8,000 bacteria/cm of root length after 8 days. The numbers of cellulose-minus and nonattaching mutant bacteria were 1/100th to 1/10th the number of wild-type bacteria recovered after 8 days. The attachment of A. tumefaciens to cut A. thaliana roots incubated in 0.4% sucrose and observed with a light microscope was also reduced with cel and att mutants. These results suggest that cellulose synthesis and attachment genes play a role in the ability of the bacteria to colonize roots, as well as in bacterial pathogenesis.  相似文献   

12.
Polymyxin-resistant (PBLr) mutants of Agrobacterium tumefaciens A6, B6, and B6M were isolated from polymyxin-sensitive (PBLs) parent strains in a defined medium containing 600 microgram of polymyxin B sulfate per millilitre. The weight and number of tumors induced by PBLr mutants on a variety of host plants such as carrot, potato, and pinto bean were 45--75% less than those induced by PBLs wild types. The crude cell envelopes (CCE) prepared from both PBLs and PBLr bacteria were inhibitory for tumor initiation when they were applied before or during the inoculation of viable tumorigenic bacteria, but not when they were applied 30 min after the inoculation of infectious bacteria. The potency to inhibit the tumor initiation by the CCE prepared from PBLs cells was approximately 50% higher than that by the equal amount of the CCE prepared from PBLr cells. The concentration of CCE preparations required to reduce tumor induction 50% in carrot and pinto bean was determined to be 2.6 mg/mL and 4.0--6.2 mg/mL for the CCE derived from PBLs and PBLr cells, respectively. These data suggest that the envelope structure or composition of PBLs and PBLr cells is distinct, and that the acquisition of resistance to polymyxin by agrobacteria modifies envelope structure or components which are essential for tumor initiation.  相似文献   

13.
Lipopolysaccharide (LPS) synthesis was inhibited, new lipid A metabolites accumulated, and growth ceased, when the plant pathogen Agrobacterium tumefaciens and the fish pathogen Aeromonas salmonicida were treated with an antibacterial agent which specifically inhibits CTP:CMP-3-deoxy-manno-octulosonate cytidylyltransferase (CMP-KDO synthase). The new lipid A metabolites were purified by chromatography on DEAE-cellulose and chemically analysed. Metabolites isolated from both bacterial species contained glucosamine and phosphate in a 1:1 molar ratio, and 3-OH-C14:0 was the major fatty acid present (1 mol and 1.4 mol per mol glucosamine for A. tumefaciens and A. salmonicida, respectively). Inhibition of LPS synthesis by CMP-KDO synthase inhibitor had no effect on the initial kinetics of A. tumefaciens attachment to cultured carrot cells, but did inhibit cell aggregation normally induced by bacterial cellulose synthesis. Bacteria treated with inhibitor remained viable and able to synthesize protein at 15% the rate of control cells, indicating that the lack of cellulose-induced aggregation was not due to the inability of bacteria to make protein, but rather the inability to respond normally to the bacterial-plant cell interaction.  相似文献   

14.
Ann G. Matthysse 《Protoplasma》1994,183(1-4):131-136
Summary Wild-typeAgrobacterium tumefaciens bind to carrot suspension culture cells. Avirulent strain NT 1 did not bind to carrot cells when they were incubated together in Murashige and Skoog medium. Conditioned medium was prepared by incubatingA. tumefaciens virulent strain C 58 with carrot cells and removing the bacteria and carrot cells using filter sterilization. This conditioned medium promoted the binding of NT 1 to carrot cells. Conditioned medium did not promote the nonspecific attachment ofEscherichia coli to carrot cells. These results suggest that when wild-typeA. tumefaciens are incubated with plant host cells, some substance(s) involved in bacterial attachment are released into the medium. Filter-sterilized medium from the incubation of the nonattachingchvB mutant A 1045 with carrot cells promoted the attachment of strain NT 1 even though A 1045 bacteria did not bind to the carrot cells. However, filter-sterilized medium from the incubation of the non-attachingatt mutant Att-B 123 with carrot cells was unable to promote the binding of strain NT 1. This suggests that nonattaching mutants ofA. tumefaciens can be divided into two groups on the basis of the properties of the substances released into the medium when the bacteria are incubated with carrot cells.Abbreviations MS Murashige and Skoog tissue culture medium Dedicated to the memory of Professor John G. Torrey  相似文献   

15.
Agrobacterium tumefaciens was tested for its ability to attach to tissue culture cells of bamboo, a monocotyledonous plant. Phase-contrast microscopy and kinetic experiments with radiolabeled bacteria showed that attachment to bamboo cells was indistinguishable from attachment to cells of dicotyledonous plants. Bacterial mutants defective in attachment to dicotyledonous plants showed similar behavior with bamboo, and extensive washing of the bamboo cells had no effect on the number of bacteria which attached.  相似文献   

16.
ABSTRACT: BACKGROUND: The synthesis of cellulose is among the most important but poorly understood biochemical processes, especially in bacteria, due to its complexity and high degree of regulation. In this study, we analyzed both the production of cellulose by all known members of the Rhizobiaceae and the diversity of Rhizobium celABC operon predicted to be involved in cellulose biosynthesis. We also investigated the involvement in cellulose production and biofilm formation of celC gene encoding an endoglucanase (CelC2) that is required for canonical symbiotic root hair infection by Rhizobium leguminosarum bv. trifolii. RESULTS: ANU843 celC mutants lacking (ANU843DeltaC2) or overproducing cellulase (ANU843C2+) produced greatly increased or reduced amounts of external cellulose micro fibrils, respectively. Calcofluor-stained cellulose micro fibrils were considerably longer when formed by ANU843DeltaC2 bacteria rather than by the wild-type strain, in correlation with a significant increase in their flocculation in batch culture. In contrast, neither calcofluor-stained extracellular micro fibrils nor flocculation was detectable in ANU843C2+ cells. To clarify the role of cellulose synthesis in Rhizobium cell aggregation and attachment, we analyzed the ability of these mutants to produce biofilms on different surfaces. Alteration of wild-type CelC2 levels resulted in a reduced ability of bacteria to form biofilms both in abiotic surfaces and in planta. CONCLUSIONS: Our results support a key role of the CelC2 cellulase in cellulose biosynthesis by modulating the length of the cellulose fibrils that mediate firm adhesion among Rhizobium bacteria leading to biofilm formation. Rhizobium cellulose is an essential component of the biofilm polysaccharidic matrix architecture and either an excess or a defect of this "building material" seem to collapse the biofilm structure. These results position cellulose hydrolytic enzymes as excellent anti-biofilm candidates.  相似文献   

17.
An assay to determine the relative virulence of wild-type and mutant strains of Agrobacterium tumefaciens on leaves of Bryophyllum daigremontiana has been developed. This assay is reproducible, is easy to learn, is not time consuming, and requires little space. The relative virulence of cellulose-minus mutants of A. tumefaciens was investigated with this assay. Some of these mutants were unaltered in virulence, while others showed a marked reduction in virulence.  相似文献   

18.
Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.  相似文献   

19.
An early step in crown gall tumor formation involves the attachment of Agrobacterium tumefaciens to host plant cells. A. tumefaciens C58::A205 (C58 attR) is a Tn3HoHo1 insertion mutant that was found to be avirulent on Bryophyllum daigremontiana and unable to attach to carrot suspension cells. The mutation mapped to an open reading frame encoding a putative protein of 247 amino acids which has significant homology to transacetylases from many bacteria. Biochemical analysis of polysaccharide extracts from wild-type strain C58 and the C58::A205 mutant showed that the latter was deficient in the production of a cell-associated polysaccharide. Anion-exchange chromatography followed by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry analyses showed that the polysaccharide produced by strain C58 was an acetylated, acidic polysaccharide and that the polysaccharide preparation contained three sugars: glucose, glucosamine, and an unidentified deoxy-sugar. Application of the polysaccharide preparation from strain C58 to carrot suspension cells prior to inoculation with the bacteria effectively inhibited attachment of the bacteria to the carrot cells, whereas an identical preparation from strain C58::A205 had no inhibitory effect and did not contain the acidic polysaccharide. Similarly, preincubation of Arabidopsis thaliana root segments with the polysaccharide prevented attachment of strain C58 to that plant. This indicates that the acidic polysaccharide may play a role in the attachment of A. tumefaciens to host soma plant cells.  相似文献   

20.
Mechanism of cellulose synthesis in Agrobacterium tumefaciens.   总被引:10,自引:2,他引:8       下载免费PDF全文
Extracts of Agrobacterium tumefaciens incorporated UDP-[14C]glucose into cellulose. When the extracts were fractionated into membrane and soluble components, neither fraction was able to synthesize cellulose. A combination of the membrane and soluble fractions restored the activity found in the original extracts. Extracts of cellulose-minus mutants showed no significant incorporation of UDP-glucose into cellulose. When mixtures of the extracts were made, the mutants were found to fall into two groups: extracts of mutants from the first group could be combined with extracts of the second group to obtain cellulose synthesis. No synthesis was observed when extracts of mutants from the same group were mixed. The groups of mutants corresponded to the two operons identified in sequencing the cel genes (A. G. Matthysse, S. White, and R. Lightfoot. J. Bacteriol. 177:1069-1075, 1995). Extracts of mutants were fractionated into membrane and soluble components, and the fractions were mixed and assayed for the ability to synthesize cellulose. When the membrane fraction from mutants in the celDE operon was combined with the soluble fraction from mutants in the celABC operon, incorporation of UDP-glucose into cellulose was observed. In order to determine whether lipid-linked intermediates were involved in cellulose synthesis, permeablized cells were examined for the incorporation of UDP-[14C]glucose into material extractable with organic solvents. No radioactivity was found in the chloroform-methanol extract of mutants in the celDE operon, but radioactive material was recovered in the chloroform-methanol extract of mutants in the celABC operon. The saccharide component of these compounds was released after mild acid hydrolysis and was found to be mainly glucose for the celA insertion mutant and a mixture of cellobiose, cellotriose, and cellotetrose for the celB and celC insertion mutants. The radioactive compound extracted with chloroform-methanol form the celC insertion mutant was incorporated into cellulose by membrane preparations from celE mutants, which suggests that this compound is a lipid-linked intermediate in cellulose synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号