首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies show that PLD is activated in cells by calcium and by protein kinase C (PKC). We found that human PLD1 and PLD2 expressed in Sf9 cells can be activated by calcium-mobilizing agonists and by co-expression with PKCalpha. The calcium-mobilizing agonists A23187 and CryIC toxin triggered large increases in phosphatidylethanol (PtdEth) production in Sf9 cells over-expressing PLD1 and PLD2, but not in vector controls. PLD activation by these agonists was largely dependent on extracellular calcium. Membrane assays demonstrated significant PLD1 and PLD2 activity in the absence of divalent cations, which could be enhanced by low levels of calcium either in the presence or absence of magnesium. PLD1 but not PLD2 activity was slightly enhanced by magnesium. Treatment of Sf9 cells expressing PLD1 and PLD2 with PMA resulted in little PtdEth production. However, a significant and comparable formation of PtdEth occurred when PLD1 or PLD2 were co-expressed with PKCalpha, but not PKCdelta, and was further augmented by PMA. In contrast to PLD1, co-expressing PLD2 with PKCalpha or PKCdelta further enhanced A23187-induced PtdEth production. Immunoprecipitation experiments demonstrated that PLD1 and PLD2 associated with the PKC isoforms in Sf9 cells. Furthermore, in membrane reconstitution assays, both PLD1 and PLD2 could be stimulated by calmodulin and PKCalpha-enriched cytosol. The results indicate that PLD2 as well as PLD1 is subject to agonist-induced activation in intact cells and can be regulated by calcium and PKC.  相似文献   

2.
A 66-kDa molecular weight protein with phospholipase D activity was solubilized and partially purified from rat liver plasma membrane. The activity and regulation of this phospholipase D have been characterized. Immunoblot analyses indicated that the enzyme was distinct from hPLD1 and PLD2, but was recognized by an antibody to the 12 terminal amino acids of PLD1. PLD activity was stimulated by 1-100 microM Ca(2+) and Mg(2+) and displayed a pH optimum of 7.5. Activity was inhibited by both saturated and unsaturated fatty acids. This PLD was activated in an ATP-independent manner by the PKC isozymes alpha and betaII but not activated by other PKC isozymes. It was also stimulated by the small G-proteins RhoA and ARF. RhoA stimulated the greatest activation, followed by ARF and PKC(alpha). This enzyme was further activated in a synergistic manner when combinations of PKC(alpha) and RhoA or ARF were used. This enzyme displayed a greater response activation by RhoA than to activation by ARF. While a potential breakdown product of PLD1, activation by RhoA indicates that the PLD characterized here is distinct from the other PLDs cloned or isolated to date.  相似文献   

3.
The present study showed that sphingosine 1-phosphate (SPP) induced rapid stimulation of phospholipase D (PLD) in skeletal muscle C2C12 cells. The effect was receptor-mediated since it was fully inhibited by pertussis toxin. All known SPP-specific receptors, Edg-1, Edg-3 and AGR16/H218, resulted to be expressed in C2C12 myoblasts, although at a different extent. SPP-induced PLD activation did not involve membrane translocation of PLD1 or PLD2 and appeared to be fully dependent on protein kinase C (PKC) catalytic activity. SPP increased membrane association of PKCalpha, PKCdelta and PKClambda, however, only PKCalpha and PKCdelta played a role in PLD activation since low concentrations of GF109203X and rottlerin, a selective inhibitor of PKCdelta, prevented PLD stimulation.  相似文献   

4.
Gelsolin, an actin-binding protein, shows a strong ability to bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here we showed in in vitro experiments that gelsolin inhibited recombinant phospholipase D1 (PLD1) and PLD2 activities but not the oleate-dependent PLD and that this inhibition was not reversed by increasing PIP(2) concentration. To investigate the role of gelsolin in agonist-mediated PLD activation, we used NIH 3T3 fibroblasts stably transfected with the cDNA for human cytosolic gelsolin. Gelsolin overexpression suppressed bradykinin-induced activation of phospholipase C (PLC) and PLD. On the other hand, sphingosine 1-phosphate (S1P)-induced PLD activation could not be modified by gelsolin overexpression, whereas PLC activation was suppressed. PLD activation by phorbol myristate acetate or Ca(2+) ionophore A23187 was not affected by gelsolin overexpression. Stimulation of control cells with either bradykinin or S1P caused translocation of protein kinase C (PKC) to the membranes. Translocation of PKC-alpha and PKC-beta1 but not PKC-epsilon was reduced in gelsolin-overexpressed cells, whereas phosphorylation of mitogen-activated protein kinase was not changed. S1P-induced PLC activation and mitogen-activated protein kinase phosphorylation were sensitive to pertussis toxin, but PLD response was insensitive to such treatment, suggesting that S1P induced PLD activation via certain G protein distinct from G(i) for PLC and mitogen-activated protein kinase pathway. Our results suggest that gelsolin modulates bradykinin-mediated PLD activation via suppression of PLC and PKC activities but did not affect S1P-mediated PLD activation.  相似文献   

5.
6.
The regulation of phospholipase D1 (PLD1) by protein kinase C (PKC) isoforms was analyzed in human melanoma cell lines. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced PLD1 activation was suppressed by the introduction of PKCdelta as well as its kinase-negative mutant in MeWo cells, which contain PKCalpha but lack PKCbeta. PLD activity was not affected by PKCdelta in G361 cells, which have PKCbeta but are deficient in PKCalpha. In MeWo cells introduced by PKCalpha and PLD1, the association of these proteins was observed, which was enhanced by the TPA treatment. In cells overexpressing PKCdelta in addition to PKCalpha and PLD1, TPA treatment increased the association of PKCdelta and PLD1, while it attenuated the association of PKCalpha and PLD1. These results indicate that PKCdelta inhibits TPA-induced PLD1 activation mediated by PKCalpha through the association with PLD1.  相似文献   

7.
Previous studies showed that in C2C12 cells, phospholipase D (PLD) and its known regulators, RhoA and protein kinase Calpha (PKCalpha), were downstream effectors in sphingosine 1-phosphate (SPP) signalling. Moreover, the role of PKC for SPP-mediated PLD activation and the requirement of PKCalpha for RhoA translocation were reported. The present results demonstrated that inactivation of RhoA, by overexpression of RhoGDP dissociation inhibitor (RhoGDI) as well as treatment with C3 exotoxin, attenuated SPP-stimulated PLD activity, supporting the involvement of RhoA in the stimulation of PLD activity by the bioactive lipid in C2C12 myoblasts. In addition, the effect of PKCalpha inhibitor G?6976 on the SPP-induced PLD activation in myoblasts, where RhoA function was inactivated, was consistent with a dual regulation of the enzyme through RhoA and PKCalpha. Interestingly, the subcellular distribution of PLD isoforms, RhoA and PKCalpha, in SPP-stimulated cells supported the view that the functional relationship between the two PLD regulators, demonstrated to occur in SPP signalling, represents a novel mechanism of regulation of specifically localized PLD.  相似文献   

8.
Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in numerous biological processes. Treatment of MS1 pancreatic islet endothelial cells with SPC increased phospholipase D (PLD) activity in a time- and dose-dependent manner. In addition, treatment of the MS1 cells with 10 microM SPC induced stimulation of phospholipase C (PLC) activity and transient elevation of intracellular Ca2+. The SPC-induced PLD activation was prevented by pretreatment of the MS1 cells with a PLC inhibitor, U73122, and an intracellular Ca2+-chelating agent, BAPTA-AM. This suggests that PLC-dependent elevation of intracellular Ca2+ is involved in the SPC-induced activation of PLD. The SPC-dependent PLD activity was also almost completely prevented by pretreatment with pan-specific PKC inhibitors, GF109203X and RO-31-8220, and with a PKCdelta-specific inhibitor, rottlerin, but not by pretreatment with GO6976, a conventional PKC isozymes-specific inhibitor. Adenoviral overexpression of a kinase-deficient mutant of PKCdelta attenuated the SPC-induced PLD activity. These results suggest that PKCdelta plays a crucial role for the SPC-induced PLD activation. The SPC-induced PLD activation was preferentially potentiated in COS-7 cells transfected with PLD2 but not with PLD1, suggesting a specific implication of PLD2 in the SPC-induced PLD activation. SPC treatment induced phosphorylation of PLD2 in COS-7 cells, and overexpression of the kinase-deficient mutant of PKCdelta prevented the SPC-induced phosphorylation of PLD2. Furthermore, SPC treatment generated reactive oxygen species (ROS) in MS1 cells and the SPC induced production of ROS was inhibited by pretreatment with U73122, BAPTA-AM, and rottlerin. In addition, pretreatment with a PLD inhibitor 1-butanol and overexpression of a lipase-inactive mutant of PLD2 but not PLD1 attenuated the SPC-induced generation of ROS. These results suggest that PLC-, Ca2+-, PKCdelta-, and PLD2-dependent pathways are essentially required for the SPC induced ROS generation.  相似文献   

9.
Regulation of phospholipase D2 activity by protein kinase C alpha   总被引:1,自引:0,他引:1  
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, G? 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.  相似文献   

10.
An increasing number of tyrosine kinases have been shown to associate with isoforms of the protein kinase C (PKC) family. Here, we show evidence for physical and functional interaction between PKCdelta and the Src family kinase Fyn in human platelets activated by alboaggregin-A, a snake venom capable of activating both GPIb-V-IX and GPVI adhesion receptors. This interaction involves phosphorylation of PKCdelta on tyrosine and is specific in that other isoforms of PKC, PKCepsilon and lambda, which also become tyrosine-phosphorylated, do not interact with Fyn. In addition, PKCdelta does not interact with other platelet-expressed tyrosine kinases Syk, Src, or Btk. Stimulation also leads to activation of both Fyn and PKCdelta and to serine phosphorylation of Fyn within a PKC consensus sequence. Alboaggregin-A-dependent activation of Fyn is blocked by bisindolylmaleimide I, suggesting a role for PKC isoforms in regulating Fyn activity. Platelet activation with alboaggregin-A induces translocation of the two kinases from cytoplasm to the plasma membrane of platelets, as observed by confocal immunofluorescence microscopy. Translocation of Fyn and PKCdelta are blocked by PP1 and bisindolylmaleimide I, showing a dependence upon Src and PKC kinase activities. Although PKC activity is required for translocation, it is not required for association between the two kinases, because this was not blocked by bisindolylmaleimide I. Rottlerin, which inhibited PKCdelta activity, did not block translocation of either PKCdelta or Fyn but potentiated platelet aggregation, 5-hydroxytryptamine secretion, and the calcium response induced by alboaggregin-A, indicating that this kinase plays a negative role in the control of these processes.  相似文献   

11.
Human involucrin (hINV) mRNA level and promoter activity increase when keratinocytes are treated with the differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). This response is mediated via a p38 mitogen-activated protein kinase-dependent pathway that targets activator protein 1 (Efimova, T., LaCelle, P. T. , Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395). In the present study we examine the role of various PKC isoforms in this regulation. Transfection of expression plasmids encoding the novel PKC isoforms delta, epsilon, and eta increase hINV promoter activity. In contrast, neither conventional PKC isoforms (alpha, beta, and gamma) nor the atypical isoform (zeta) regulate promoter activity. Consistent with these observations, promoter activity is inhibited by the PKCdelta-selective inhibitor, rottlerin, but not by Go-6976, an inhibitor of conventional PKC isoforms, and novel PKC isoform-dependent promoter activation is inhibited by dominant-negative PKCdelta. This regulation appears to be physiologically important, as transfection of keratinocytes with PKCdelta, -epsilon, or -eta increases expression of the endogenous hINV gene. Synergistic promoter activation (>/=100-fold) is observed when PKCepsilon- or -eta-transfected cells are treated with TPA. In contrast, the PKCdelta-dependent response is more complex as either activation or inhibition is observed, depending upon PKCdelta concentration.  相似文献   

12.
Protein kinase C (PKC) family members are allosterically activated following membrane recruitment by specific membrane-targeting modules. Conventional PKC isozymes are recruited to membranes by two such modules: a C1 domain, which binds diacylglycerol (DAG), and a C2 domain, which is a Ca2+-triggered phospholipid-binding module. In contrast, novel PKC isozymes respond only to DAG, despite the presence of a C2 domain. Here, we address the molecular mechanism of membrane recruitment of the novel isozyme PKCdelta. We show that PKCdelta and a conventional isozyme, PKCbetaII, bind membranes with comparable affinities. However, dissection of the contribution of individual domains to this binding revealed that, although the C2 domain is a major determinant in driving the interaction of PKCbetaII with membranes, the C2 domain of PKCdelta does not bind membranes. Instead, the C1B domain is the determinant that drives the interaction of PKCdelta with membranes. The C2 domain also does not play any detectable role in the activity or subcellular location of PKCdelta in cells; in vivo imaging studies revealed that deletion of the C2 domain does not affect the stimulus-dependent translocation or activity of PKCdelta. Thus, the increased affinity of the C1 domain of PKCdelta allows this isozyme to respond to DAG alone, whereas conventional PKC isozymes require the coordinated action of Ca2+ binding to the C2 domain and DAG binding to the C1 domain for activation.  相似文献   

13.
In L6 skeletal muscle cells and immortalized hepatocytes, insulin induced a 2-fold increase in the activity of the pyruvate dehydrogenase (PDH) complex. This effect was almost completely blocked by the protein kinase C (PKC) delta inhibitor Rottlerin and by PKCdelta antisense oligonucleotides. At variance, overexpression of wild-type PKCdelta or of an active PKCdelta mutant induced PDH complex activity in both L6 and liver cells. Insulin stimulation of the activity of the PDH complex was accompanied by a 2.5-fold increase in PDH phosphatases 1 and 2 (PDP1/2) activity with no change in the activity of PDH kinase. PKCdelta antisense blocked insulin activation of PDP1/2, the same as with PDH. In insulin-exposed cells, PDP1/2 activation was paralleled by activation and mitochondrial translocation of PKCdelta, as revealed by cell subfractionation and confocal microscopy studies. The mitochondrial translocation of PKCdelta, like its activation, was prevented by Rottlerin. In extracts from insulin-stimulated cells, PKCdelta co-precipitated with PDP1/2. PKCdelta also bound to PDP1/2 in overlay blots, suggesting that direct PKCdelta-PDP interaction may occur in vivo as well. In intact cells, insulin exposure determined PDP1/2 phosphorylation, which was specifically prevented by PKCdelta antisense. PKCdelta also phosphorylated PDP in vitro, followed by PDP1/2 activation. Thus, in muscle and liver cells, insulin causes activation and mitochondrial translocation of PKCdelta, accompanied by PDP phosphorylation and activation. These events are necessary for insulin activation of the PDH complex in these cells.  相似文献   

14.
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP.  相似文献   

15.
16.
G protein-coupled and tyrosine kinase receptor activation of phospholipase D1 (PLD1) play key roles in agonist-stimulated cellular responses such as regulated exocytosis, actin stress fiber formation, and alterations in cell morphology and motility. Protein Kinase C, ADP-ribosylation factor (ARF), and Rho family members activate PLD1 in vitro; however, the actions of the stimulators on PLD1 in vivo have been proposed to take place through indirect pathways. We have used the yeast split-hybrid system to generate PLD1 alleles that fail to bind to or to be activated by RhoA but that retain wild-type responses to ARF and PKC. These alleles then were employed in combination with alleles unresponsive to PKC or to both stimulators to examine the activation of PLD1 by G protein-coupled receptors. Our results demonstrate that direct stimulation of PLD1 in vivo by RhoA (and by PKC) is critical for significant PLD1 activation but that PLD1 subcellular localization and regulated phosphorylation occur independently of these stimulatory pathways.  相似文献   

17.
Receptor-regulated phospholipase D (PLD) is a key signaling pathway implicated in the control of fundamental biological processes. Here evidence is presented that in addition to protein kinase C (PKC) and Rho GTPases, Ca(2+) response evoked by sphingosine 1-phosphate (S1P) also participates to the enzyme regulation. Ca(2+) was found critical for PKC(alpha)-mediated PLD activation. Moreover, S1P-induced PLD activity resulted diminished by calmodulin inhibitors such as W-7 and CGS9343B implicating its involvement in the process. A plausible candidate for Ca(2+)-dependent PLD regulation by S1P was represented by calcineurin, in view of the observed reduction of the stimulatory effect by cyclosporin A. In contrast, monomeric GTP-binding protein Ral was translocated to membranes by S1P in a Ca(2+)-independent manner, ruling out its possible role in agonist-mediated regulation of PLD.  相似文献   

18.
The protein-tyrosine phosphatase CD45 is expressed on all monocytic cells, but its function in these cells is not well defined. Here we report that CD45 negatively regulates monocyte differentiation by inhibiting phorbol 12-myristate 13-acetate (PMA)-dependent activation of protein kinase C (PKC) delta. We found that antisense reduction of CD45 in U937 monocytic cells (CD45as cells) increased by 100% the ability of PMA to enlarge cell size, increase cell cytoplasmic process width and length, and induce surface expression of CD11b. In addition, reduction in CD45 expression caused the duration of peak PMA-induced MEK and extracellular signal-regulated kinase (ERK) 1/2 activity to increase from 5 min to 30 min while leading to a 4-fold increase in PMA-dependent PKCdelta activation. Importantly, PMA-dependent tyrosine phosphorylation of PKCdelta was also increased 4-fold in CD45as cells. Finally, inhibitors of MEK (PD98059) and PKCdelta (rottlerin) completely blocked PMA-induced monocytic cell differentiation. Taken together, these data indicate that CD45 inhibits PMA-dependent PKCdelta activation by impeding PMA-dependent PKCdelta tyrosine phosphorylation. Furthermore, this blunting of PKCdelta activation leads to an inhibition of PKCdelta-dependent activation of ERK1/2 and ERK1/2-dependent monocyte differentiation. These findings suggest that CD45 is a critical regulator of monocytic cell development.  相似文献   

19.
Our study identifies tyrosine phosphorylation as a novel protein kinase Cdelta (PKCdelta) activation mechanism that modifies PKCdelta-dependent phosphorylation of cardiac troponin I (cTnI), a myofilament regulatory protein. PKCdelta phosphorylates cTnI at Ser23/Ser24 when activated by lipid cofactors; Src phosphorylates PKCdelta at Tyr311 and Tyr332 leading to enhanced PKCdelta autophosphorylation at Thr505 (its activation loop) and PKCdelta-dependent cTnI phosphorylation at both Ser23/Ser24 and Thr144. The Src-dependent acquisition of cTnI-Thr144 kinase activity is abrogated by Y311F or T505A substitutions. Treatment of detergent-extracted single cardiomyocytes with lipid-activated PKCdelta induces depressed tension at submaximum but not maximum [Ca2+] as expected for cTnI-Ser23/Ser24 phosphorylation. Treatment of myocytes with Src-activated PKCdelta leads to depressed maximum tension and cross-bridge kinetics, attributable to a dominant effect of cTnI-Thr144 phosphorylation. Our data implicate PKCdelta-Tyr311/Thr505 phosphorylation as dynamically regulated modifications that alter PKCdelta enzymology and allow for stimulus-specific control of cardiac mechanics during growth factor stimulation and oxidative stress.  相似文献   

20.
Caveolin-3 (cav-3) is a key structural component of caveolar membrane in skeletal muscle. Cav-3-enriched light membrane (CELM) fractions obtained from C2C12 myotubes contain phospholipase D1 (PLD1) and its major regulators, RhoA and protein kinase Calpha (PKCalpha). All these proteins were found bound to cav-3. An in vivo assay of PLD activity, which allows to localize the reaction product in CELMs, indicated that the enzyme associated to this membrane microdomain was active. Moreover, bradykinin (BK), thrombin and phorbol 12-myristate 13-acetate induced rapid stimulation of PLD activity in CELMs. The cav-3-PLD1 complex was not affected by BK treatment, whereas the agonist induced a marked increase of RhoA association with cav-3. Furthermore, BK-induced PLD activation in CELMs was dependent, at least in part, on PKCalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号