首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant functional traits vary both along environmental gradients and among species occupying similar conditions, creating a challenge for the synthesis of functional and community ecology. We present a trait-based approach that provides an additive decomposition of species' trait values into alpha and beta components: beta values refer to a species' position along a gradient defined by community-level mean trait values; alpha values are the difference between a species' trait values and the mean of co-occurring taxa. In woody plant communities of coastal California, beta trait values for specific leaf area, leaf size, wood density and maximum height all covary strongly, reflecting species distributions across a gradient of soil moisture availability. Alpha values, on the other hand, are generally not significantly correlated, suggesting several independent axes of differentiation within communities. This trait-based framework provides a novel approach to integrate functional ecology and gradient analysis with community ecology and coexistence theory.  相似文献   

2.
In focusing on how organisms' generalizable functional properties (traits) interact mechanistically with environments across spatial scales and levels of biological organization, trait‐based approaches provide a powerful framework for attaining synthesis, generality and prediction. Trait‐based research has considerably improved understanding of the assembly, structure and functioning of plant communities. Further advances in ecology may be achieved by exploring the trait–environment relationships of non‐sessile, heterotrophic organisms such as terrestrial arthropods, which are geographically ubiquitous, ecologically diverse, and often important functional components of ecosystems. Trait‐based studies and trait databases have recently been compiled for groups such as ants, bees, beetles, butterflies, spiders and many others; however, the explicit justification, conceptual framework, and primary‐evidence base for the burgeoning field of ‘terrestrial arthropod trait‐based ecology’ have not been well established. Consequently, there is some confusion over the scope and relevance of this field, as well as a tendency for studies to overlook important assumptions of the trait‐based approach. Here we aim to provide a broad and accessible overview of the trait‐based ecology of terrestrial arthropods. We first define and illustrate foundational concepts in trait‐based ecology with respect to terrestrial arthropods, and justify the application of trait‐based approaches to the study of their ecology. Next, we review studies in community ecology where trait‐based approaches have been used to elucidate how assembly processes for terrestrial arthropod communities are influenced by niche filtering along environmental gradients (e.g. climatic, structural, and land‐use gradients) and by abiotic and biotic disturbances (e.g. fire, floods, and biological invasions). We also review studies in ecosystem ecology where trait‐based approaches have been used to investigate biodiversity–ecosystem function relationships: how the functional diversity of arthropod communities relates to a host of ecosystem functions and services that they mediate, such as decomposition, pollination and predation. We then suggest how future work can address fundamental assumptions and limitations by investigating trait functionality and the effects of intraspecific variation, assessing the potential for sampling methods to bias the traits and trait values observed, and enhancing the quality and consolidation of trait information in databases. A roadmap to guide observational trait‐based studies is also presented. Lastly, we highlight new areas where trait‐based studies on terrestrial arthropods are well positioned to advance ecological understanding and application. These include examining the roles of competitive, non‐competitive and (multi‐)trophic interactions in shaping coexistence, and macro‐scaling trait–environment relationships to explain and predict patterns in biodiversity and ecosystem functions across space and time. We hope this review will spur and guide future applications of the trait‐based framework to advance ecological insights from the most diverse eukaryotic organisms on Earth.  相似文献   

3.
Explaining the mechanisms that produce the enormous diversity within and between tropical tree communities is a pressing challenge for plant community ecologists. Mechanistic hypotheses range from niche-based deterministic to dispersal-based stochastic models. Strong tests of these hypotheses require detailed information regarding the functional strategies of species. A few tropical studies to date have examined trait dispersion within individual forest plots using species trait means in order to ask whether coexisting species tend to be more or less functionally similar than expected given a null model. The present work takes an alternative approach by: (i) explicitly incorporating population-level trait variability; and (ii) quantifying the functional beta diversity in a series of 15 tropical forest plots arrayed along an elevational gradient. The results show a strong pattern of decay in community functional similarity with elevation. These observed patterns of functional beta diversity are shown to be highly non-random and support a deterministic model of tropical tree community assembly and turnover.  相似文献   

4.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

5.
Abstract Sprouting vigour is determined by the plant amount of reserves and intrinsic growth rate of plants. While the first factor has been well studied, the second is far less understood. Although a higher growth rate would imply a higher sprouting vigour, fast‐growing species may have less below‐ground reserves, and thus, a lower sprouting potential. The relative importance of both opposite effects was little explored in the literature. To analyse the influence of growth rate on sprouting vigour, one growth season after a fire we measured plant height of the old (pre‐fire) and new (post‐fire) tissue in 194 individuals of 14 woody species from a woodland in central Argentina. We calculated a mean value of pre‐ and post‐fire height for each species, and obtained from a data‐base potential height at maturity, wood density (WD) and specific leaf area (SLA), as surrogates of intrinsic growth rate. We performed a forward stepwise multiple regression using WD and SLA, together with mean pre‐fire height or potential height as independent variables, and mean post‐fire height (as an indicator of resprout vigour) as the dependent variable. Interactions were also tested. Pre‐fire height, WD and their interaction term were the variables that best explained post‐fire height. We also analysed the relationship between pre‐ and post‐fire size for each species independently by fitting hyperbolic functions. Then we correlated both parameters of the functions to species characteristics (WD, SLA, potential height and mean pre‐fire height). Both parameters of the hyperbolic functions were significantly correlated only with WD, but not with the other species characteristics. All results together indicate that species with low WD (i.e. high potential growth rate) regrow more vigorously than species with high WD when pre‐fire individuals were tall. In contrast, when pre‐fire individuals were small, WD had no influence on sprout vigour. A trade‐off between allocation of biomass to underground reserves and shoot growth seems to be responsible for the patterns obtained. For small individuals, below‐ground reserves seem to play a more important role than inherent growth rate (here measured through WD) in determining the sprouting vigour, while for large individuals, growth rate seems more important than reserves.  相似文献   

6.
Abstract Sprouting vigour is determined by the plant amount of reserves and intrinsic growth rate of plants. While the first factor has been well studied, the second is far less understood. Although a higher growth rate would imply a higher sprouting vigour, fast‐growing species may have less below‐ground reserves, and thus, a lower sprouting potential. The relative importance of both opposite effects was little explored in the literature. To analyse the influence of growth rate on sprouting vigour, one growth season after a fire we measured plant height of the old (pre‐fire) and new (post‐fire) tissue in 194 individuals of 14 woody species from a woodland in central Argentina. We calculated a mean value of pre‐ and post‐fire height for each species, and obtained from a database potential height at maturity, wood density (WD) and specific leaf area (SLA), as surrogates of intrinsic growth rate. We performed a forward stepwise multiple regression using WD and SLA, together with mean pre‐fire height or potential height as independent variables, and mean post‐fire height (as an indicator of resprout vigour) as the dependent variable. Interactions were also tested. Pre‐fire height, WD and their interaction term were the variables that best explained post‐fire height. We also analysed the relationship between pre‐ and post‐fire size for each species independently by fitting hyperbolic functions. Then we correlated both parameters of the functions to species characteristics (WD, SLA, potential height and mean pre‐fire height). Both parameters of the hyperbolic functions were significantly correlated only with WD, but not with the other species characteristics. All results together indicate that species with low WD (i.e. high potential growth rate) regrow more vigorously than species with high WD when pre‐fire individuals were tall. In contrast, when pre‐fire individuals were small, WD had no influence on sprout vigour. A trade‐off between allocation of biomass to underground reserves and shoot growth seems to be responsible for the patterns obtained. For small individuals, below‐ground reserves seem to play a more important role than inherent growth rate (here measured through WD) in determining the sprouting vigour, while for large individuals, growth rate seems more important than reserves.  相似文献   

7.
A major challenge in ecology, conservation and global‐change biology is to understand why biodiversity responds differently to similar environmental changes. Contingent biodiversity responses may depend on how disturbance and dispersal interact to alter variation in community composition (β‐diversity) and assembly mechanisms. However, quantitative syntheses of these patterns and processes across studies are lacking. Using null‐models and meta‐analyses of 22 factorial experiments in herbaceous plant communities across Europe and North America, we show that disturbance diversifies communities when dispersal is limited, but homogenises communities when combined with increased immigration from the species pool. In contrast to the hypothesis that disturbance and dispersal mediate the strength of niche assembly, both processes altered β‐diversity through neutral‐sampling effects on numbers of individuals and species in communities. Our synthesis suggests that stochastic effects of disturbance and dispersal on community assembly play an important, but underappreciated, role in mediating biotic homogenisation and biodiversity responses to environmental change.  相似文献   

8.
BACKGROUND AND AIMS: When ecologically important plant traits are correlated they may be said to constitute an ecological 'strategy' dimension. Through identifying these dimensions and understanding their inter-relationships we gain insight into why particular trait combinations are favoured over others and into the implications of trait differences among species. Here we investigated relationships among several traits, and thus the strategy dimensions they represented, across 2134 woody species from seven Neotropical forests. METHODS: Six traits were studied: specific leaf area (SLA), the average size of leaves, seed and fruit, typical maximum plant height, and wood density (WD). Trait relationships were quantified across species at each individual forest as well as across the dataset as a whole. 'Phylogenetic' analyses were used to test for correlations among evolutionary trait-divergences and to ascertain whether interspecific relationships were biased by strong taxonomic patterning in the traits. KEY RESULTS: The interspecific and phylogenetic analyses yielded congruent results. Seed and fruit size were expected, and confirmed, to be tightly related. As expected, plant height was correlated with each of seed and fruit size, albeit weakly. Weak support was found for an expected positive relationship between leaf and fruit size. The prediction that SLA and WD would be negatively correlated was not supported. Otherwise the traits were predicted to be largely unrelated, being representatives of putatively independent strategy dimensions. This was indeed the case, although WD was consistently, negatively related to leaf size. CONCLUSIONS: The dimensions represented by SLA, seed/fruit size and leaf size were essentially independent and thus conveyed largely independent information about plant strategies. To a lesser extent the same was true for plant height and WD. Our tentative explanation for negative WD-leaf size relationships, now also known from other habitats, is that the traits are indirectly linked via plant hydraulics.  相似文献   

9.
Several biodiversity experiments have shown positive effects of species richness on aboveground biomass production, but highly variable responses of individual species. The well-known fact that the competitive ability of plant species depends on size differences among species, raises the question of effects of community species richness on small-stature subordinate species. We used experimental grasslands differing in species richness (1-60 species) and functional group richness (one to four functional groups) to study biodiversity effects on biomass production and ecophysiological traits of five small-stature herbs (Bellis perennis, Plantago media, Glechoma hederacea, Ranunculus repens and Veronica chamaedrys). We found that ecophysiological adaptations, known as typical shade-tolerance strategies, played an important role with increasing species richness and in relation to a decrease in transmitted light. Specific leaf area and leaf area ratio increased, while area-based leaf nitrogen decreased with increasing community species richness. Community species richness did not affect daily leaf carbohydrate turnover of V. chamaedrys and P. media indicating that these species maintained efficiency of photosynthesis even in low-light environments. This suggests an important possible mechanism of complementarity in such grasslands, whereby smaller species contribute to a better overall efficiency of light use. Nevertheless, these species rarely contributed a large proportion to community biomass production or achieved higher yields in mixtures than expected from monocultures. It seems likely that the allocation to aboveground plant organs to optimise carbon assimilation limited the investment in belowground organs to acquire nutrients and thus hindered these species from increasing their performance in multi-species mixtures.  相似文献   

10.
How the coexistence of species is affected by the presence of multiple resources is a major question in microbial ecology. We experimentally demonstrate that differences in diauxic lags, which occur as species deplete their own environments and adapt their metabolisms, allow slow‐growing microbes to stably coexist with faster‐growing species in multi‐resource environments despite being excluded in single‐resource environments. In our focal example, an Acinetobacter species (Aci2) competitively excludes Pseudomonas aurantiaca (Pa) on alanine and on glutamate. However, they coexist on the combination of both resources. Experiments reveal that Aci2 grows faster but Pa has shorter diauxic lags. We establish a tradeoff between Aci2’s fast growth and Pa’s short lags as their mechanism for coexistence. We model this tradeoff to accurately predict how environmental changes affect community composition. We extend our work by surveying a large set of competitions and observe coexistence nearly four times as frequently when the slow‐grower is the fast‐switcher. Our work illustrates a simple mechanism, based entirely on supplied‐resource growth dynamics, for the emergence of multi‐resource coexistence.  相似文献   

11.

Aim

The local‐ and regional‐based forms of anthropogenic change reducing grassland diversity are generally identified, but these scale‐dependent processes tend to co‐occur with unclear interactive effects. Here, we explicitly test how common local and regional perturbations simultaneously affect plant alpha and beta diversity in a multiyear community assembly experiment using fragments of grassland habitat of various sizes. We hypothesized that local disturbances and decreasing patch size would interact, suppressing local diversity while homogenizing composition among patches.

Location

North America.

Methods

We conducted a three‐year grassland assembly experiment, factorially manipulating local perturbation (nitrogen addition and mowing) and patch area for 36 patches over 13 ha. We quantified the individual and interactive effects of these local and regional factors on plant alpha and beta diversity within (quadrat scale) and among patches (patch scale). We also used a null model approach to disentangle between stochastic‐ and niche‐based assembly mechanisms.

Results

We detected a gradient of assembly outcomes driven by two non‐interacting factors—the effects of N fertilization on alpha (negative) and beta (positive) diversity regardless of spatial scale and the scale‐dependant effect of increasing patch size on alpha (positive) and beta (positive) diversity. These effects unfolded over time, with the constraints on richness and composition shifting from dispersal‐based during the first sampling year to perturbation‐and size‐based factors at year two and three. Fertilization effects were driven by a mixture of deterministic (i.e., selection at the species level) and stochastic (i.e., random extinctions) processes resulting in a decline in local richness but an increase in spatial heterogeneity in species composition. Area appeared to influence alpha diversity mainly via stochastic “sampling effect”—larger patches represented a larger sample of the regional pool. Niche‐based processes, however, led to convergence in beta diversity among smaller patches driving a positive overall effect of area on beta diversity.

Main conclusion

Our results illustrate how diversity regulation in contemporary grasslands can be simultaneously shaped by local and regional factors acting additively but via contrasting assembly mechanisms that operate at different spatial and temporal scales.
  相似文献   

12.
Abstract: Plant species vary widely in their average leaf lifespan (LL) and specific leaf area (SLA, leaf area per dry mass). The negative LL–SLA relationship commonly seen among species represents an important evolutionary trade‐off, with higher SLA indicating greater potential for fast growth (higher rate of return on a given investment), but longer LL indicating a longer duration of the revenue stream from that investment. We investigated how these leaf‐economic traits related to aggregate properties of the plant crown. Across 14 Australian sclerophyll shrub species, those with long LL accumulated more leaf mass and leaf area per unit ground area. Light attenuation through their canopies was more severe. Leaf accumulation and light attenuation were more weakly related to SLA than to LL. The greater accumulation of foliage in species with longer LL and lower SLA may counterbalance their generally lower photosynthetic rates and light‐capture areas per gram of leaf.  相似文献   

13.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

14.
15.
Dry mass costs of deploying leaf area in relation to leaf size   总被引:8,自引:1,他引:7  
  相似文献   

16.
17.

Questions

Predicting which newly arrived species will establish and become invasive is a problem that has long vexed researchers. In a study of cold temperate oak forest stands, we examined two contrasting hypotheses regarding plant functional traits to explain the success of certain non‐native species. Under the “join the locals” hypothesis, successful invaders are expected to share traits with resident species because they employ successful growth strategies under light‐limited understorey conditions. Instead, under the “try harder” hypothesis, successful invaders are expected to have traits different from native species in order to take advantage of unused niche space.

Location

Minnesota, USA.

Methods

We examined these two theories using 109 native and 11 non‐native plants in 68 oak forest stands. We focused on traits related to plant establishment and growth, including specific leaf area (SLA), leaf carbon‐to‐nitrogen ratio (C:N), wood density, plant maximum height, mycorrhizal type, seed mass and growth form. We compared traits of native and non‐native species using ordinations in multidimensional trait space and compared community‐weighted mean (CWM) trait values across sites.

Results

We found few differences between trait spaces occupied by native and non‐native species. Non‐native species occupied smaller areas of trait space than natives, yet were within that of the native species, indicating similar growth strategies. We observed a higher proportion of non‐native species in sites with higher native woody species CWM SLA and lower CWM C:N. Higher woody CWM SLA was observed in sites with higher soil pH, while lower CWM C:N was found in sites with higher light levels.

Conclusions

Non‐native plants in this system have functional traits similar to natives and are therefore “joining the locals.” However, non‐native plants may possess traits toward the acquisitive end of the native plant trait range, as evidenced by higher non‐native plant abundance in high‐resource environments.
  相似文献   

18.
19.
We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free‐air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3] during growing seasons 1998–2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2‐ and O3‐exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone‐specific decrease in wood density and cell wall thickness was observed under elevated CO2. In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short‐term impact studies conducted with young seedlings may not give a realistic view of long‐term ecosystem responses.  相似文献   

20.
Seed dispersal limitation, which can be exacerbated by a number of anthropogenic causes, can result in local communities having fewer species than they might potentially support, representing a potential diversity deficit. The link between processes that shape natural variation in diversity, such as dispersal limitation, and the consequent effects on productivity is less well known. Here, we synthesised data from 12 seed addition experiments in grassland communities to examine the influence of reducing seed dispersal limitation (from 1 to 60 species added across experiments) on species richness and productivity. For every 10 species of seed added, we found that species richness increased by about two species. However, the increase in species richness by overcoming seed limitation did not lead to a concomitant increase in above‐ground biomass production. This highlights the need to consider the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the processes that shape diversity and productivity simultaneously in naturally assembled communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号