首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The volatile organic compound (VOC) profile in plant leaves often changes after biotic and abiotic stresses. Monitoring changes in VOCs in plant leaves could provide valuable information about multitrophic interactions. In the current study, we investigated the effect of Asian citrus psyllid (ACP) infestation, citrus greening pathogen (Candidatus Liberibacter asiaticus [CLas]) infection, and simultaneous attack by ACP and CLas on the VOC content of citrus leaves. Leaf volatiles were extracted using hexane and analyzed with gas chromatography-mass spectrometry (GC-MS). Although ACP is a phloem-sucking insect that causes minimal damage to plant tissues, the relative amount of 21 out of the 27 VOCs increased 2- to 10-fold in ACP-infested plants. The relative amount of d-limonene, β-phelandrene, citronellal, and undecanal were increased 4- to 20- fold in CLas-infected plants. A principle component analysis (PCA) and cluster analysis (CA) showed that VOC patterns of ACP-infested and CLas-infected plants were different from each other and were also different from the controls, while the VOC pattern of double-attacked plants was more like that of the controls than that of ACP-infested or CLas-infected plants. VOC amounts from leaves were compromised when plants were attacked by ACP and CLas. The results of this study showed that a simple direct extraction of citrus leaf volatiles could be successfully used to discriminate between healthy and CLas-infected plants. Information about the effects of insect and pathogen attack on the VOC content profile of plants might contribute to a better understanding of biotic stress.  相似文献   

2.
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. ‘Candidatus Liberibacter asiaticus’ (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.  相似文献   

3.
ATP/ADP translocases transport ATP across a lipid bilayer, which is normally impermeable to this molecule due to its size and charge. These transport proteins appear to be unique to mitochondria, plant plastids, and obligate intracellular bacteria. All bacterial ATP/ADP translocases characterized thus far have been found in endosymbionts of protozoa or pathogens of higher-order animals, including humans. A putative ATP/ADP translocase was uncovered during the genomic sequencing of the intracellular plant pathogen “Candidatus Liberibacter asiaticus,” the causal agent of citrus huanglongbing. Bioinformatic analysis of the protein revealed 12 transmembrane helices and predicted an isoelectric point of 9.4, both of which are characteristic of this family of proteins. The “Ca. Liberibacter asiaticus” gene (nttA) encoding the translocase was subsequently expressed in Escherichia coli and shown to enable E. coli to import ATP directly into the cell. Competition assays with the heterologous E. coli system demonstrated that the translocase was highly specific for ATP and ADP but that other nucleotides, if present in high concentrations, could also be taken up and/or block the ability of the translocase to import ATP. In addition, a protein homologous to NttA was identified in “Ca. Liberibacter solanacearum,” the bacterium associated with potato zebra chip disease. This is the first reported characterization of an ATP translocase from “Ca. Liberibacter asiaticus,” indicating that some intracellular bacteria of plants also have the potential to import ATP directly from their environment.Citrus huanglongbing (HLB), also known as citrus greening, is a disease of citrus that was first reported in China in the early 20th century (33) and identified in the United States in August 2005 in South Florida (22). As it spread rapidly across Florida, HLB has caused substantial economic losses to the citrus industry, and now other citrus-producing states may be in danger as well. The effects of this disease range from mild to severe and include symptoms such as yellow shoots, blotchy mottles on leaves, vein yellowing and corking, lopsided fruit with aborted seeds, early fruit dropping, and limb dieback, which can ultimately lead to the total loss of the infected tree. The disease has been associated with three species of bacteria known as “Candidatus Liberibacter” species. Each of the three “Ca. Liberibacter” species was discovered and named based on its presumptive origin, with “Ca. Liberibacter asiaticus” being found in Asia, “Ca. Liberibacter africanus” in Africa (13), and “Ca. Liberibacter americanus” in South America (24). A fourth species, known as “Ca. Liberibacter solanacearum,” is genetically related, although it is not naturally associated with HLB in citrus plants (16). “Ca. Liberibacter solanacearum” is associated with the emerging zebra chip disease of potatoes and tomatoes (15). “Ca. Liberibacter” species are Gram-negative, fastidious alphaproteobacteria (13) that reside in the sieve tube elements of infected plants (23). The same bacteria found in citrus plants have also been found in two phloem-feeding insects, the Asian citrus psyllid (Diaphorina citri) and the African citrus psyllid (Trioza erytreae), which act as vectors for the disease (for recent reviews, see references 3 and 9). Since insects that carry the pathogen do not have a shortened life span or other adverse effects (12), “Ca. Liberibacter” is thought to act more as an endosymbiont than as a pathogen in insects. There is no known cure for HLB, and current management strategies include elimination of infected trees and methods aimed at vector control. Because of the rapid spread and devastating consequences of infection with “Ca. Liberibacter,” understanding this obligate intracellular pathogen will be critical for the survival of the citrus industry.Recently, the complete genome sequence of “Ca. Liberibacter asiaticus” was obtained via metagenomics (5). Within this “Ca. Liberibacter asiaticus” genome, an open reading frame encoding a putative ATP/ADP translocase was found. Translocases are enzymes that aid in the transport of molecules, in this case adenosine phosphate, across a cell membrane. These adenylate transporters can be placed into one of three groups based upon where they reside. The first group was discovered in mitochondria and is involved in transporting the ATP synthesized in the mitochondrial matrix to the cytosol of the cell (28). The second type of transporter is found in plant plastids (19, 21, 31). In contrast to the mitochondrial transporters, which transport ATP to the cytosol, this set of transporters import ATP from the cytosol. Their function is to provide the stroma with a supply of cytosolic ATP in order to facilitate many of the anabolic reactions that take place there. The third set of transporters was originally discovered in the obligate intracellular bacterium Rickettsia prowazekii (30). Similar to their plastid counterparts, these transporters import ATP from the host cell''s cytosol and translocate it into the bacterial cell. Bacteria that posses this enzyme can act as “energy parasites” and import ATP directly from their hosts.Since its discovery in Rickettsia, the ATP/ADP translocase has been identified in other obligate intracellular parasites of animals, such as Chlamydia psittaci and Lawsonia intracellularis (11, 20), in addition to some protist endosymbionts, such as Caedibacter caryophilus and “Protochlamydia amoebophila” (4, 10). Analyses of the translocase proteins in these bacteria have demonstrated that certain translocase homologs can be used by the cell to import nucleotides other than ATP (2, 4, 10, 26), and thus, the family of proteins has come to be known more generally as nucleotide transporters. In spite of all of the previous research in this area, an ATP/ADP translocase from a bacterial plant pathogen has yet to be characterized. Here, we present the first characterization of a nucleotide transport protein (NttA) from the obligate intracellular plant pathogen “Ca. Liberibacter asiaticus.”  相似文献   

4.
The bacterial microbiomes of citrus plants were characterized in response to ‘Candidatus Liberibacter asiaticus’ (Las)-infection and treatments with ampicillin (Amp) and gentamicin (Gm) by Phylochip-based metagenomics. The results revealed that 7,407 of over 50,000 known Operational Taxonomic Units (OTUs) in 53 phyla were detected in citrus leaf midribs using the PhyloChip™ G3 array, of which five phyla were dominant, Proteobacteria (38.7%), Firmicutes (29.0%), Actinobacteria (16.1%), Bacteroidetes (6.2%) and Cyanobacteria (2.3%). The OTU62806, representing ‘Candidatus Liberibacter’, was present with a high titer in the plants graft-inoculated with Las-infected scions treated with Gm at 100 mg/L and in the water-treated control (CK1). However, the Las bacterium was not detected in the plants graft-inoculated with Las-infected scions treated with Amp at 1.0 g/L or in plants graft-inoculated with Las-free scions (CK2). The PhyloChip array demonstrated that more OTUs, at a higher abundance, were detected in the Gm-treated plants than in the other treatment and the controls. Pairwise comparisons indicated that 23 OTUs from the Achromobacter spp. and 12 OTUs from the Methylobacterium spp. were more abundant in CK2 and CK1, respectively. Ten abundant OTUs from the Stenotrophomonas spp. were detected only in the Amp-treatment. These results provide new insights into microbial communities that may be associated with the progression of citrus huanglongbing (HLB) and the potential effects of antibiotics on the disease and microbial ecology.  相似文献   

5.
Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited ‘Candidatus Liberibacter’, is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with ‘Candidatus Liberibacter asiaticus’ (Las)-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA) and hierarchical clustering analyses (HCA) demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application.  相似文献   

6.
Koh EJ  Zhou L  Williams DS  Park J  Ding N  Duan YP  Kang BH 《Protoplasma》2012,249(3):687-697
Huanglongbing (HLB) is a destructive disease of citrus trees caused by phloem-limited bacteria, Candidatus Liberibacter spp. One of the early microscopic manifestations of HLB is excessive starch accumulation in leaf chloroplasts. We hypothesize that the causative bacteria in the phloem may intervene photoassimilate export, causing the starch to over-accumulate. We examined citrus leaf phloem cells by microscopy methods to characterize plant responses to Liberibacter infection and the contribution of these responses to the pathogenicity of HLB. Plasmodesmata pore units (PPUs) connecting companion cells and sieve elements were stained with a callose-specific dye in the Liberibacter-infected leaf phloem cells; callose accumulated around PPUs before starch began to accumulate in the chloroplasts. When examined by transmission electron microscopy, PPUs with abnormally large callose deposits were more abundant in the Liberibacter-infected samples than in the uninfected samples. We demonstrated an impairment of symplastic dye movement into the vascular tissue and delayed photoassimilate export in the Liberibacter-infected leaves. Liberibacter infection was also linked to callose deposition in the sieve plates, which effectively reduced the sizes of sieve pores. Our results indicate that Liberibacter infection is accompanied by callose deposition in PPUs and sieve pores of the sieve tubes and suggest that the phloem plugging by callose inhibits phloem transport, contributing to the development of HLB symptoms.  相似文献   

7.
Expression divergence, rather than sequence divergence, has been shown to be important in speciation, particularly in the early stages of divergence of traits involved in reproductive isolation. In the two European subspecies of house mice, Mus musculus musculus and Mus musculus domesticus, earlier studies have demonstrated olfactory‐based assortative mate preference in populations close to their hybrid zone. It has been suggested that this behaviour evolved following the recent secondary contact between the two taxa (~3,000 years ago) in response to selection against hybridization. To test for a role of changes in gene expression in the observed behavioural shift, we conducted a RNA sequencing experiment on mouse vomeronasal organs. Key candidate genes for pheromone‐based subspecies recognition, the vomeronasal receptors, are expressed in these organs. Overall patterns of gene expression varied significantly between samples from the two subspecies, with a large number of differentially expressed genes between the two taxa. In contrast, only ~200 genes were found repeatedly differentially expressed between populations within M. m. musculus that did or did not display assortative mate preferences (close to or more distant from the hybrid zone, respectively), with an overrepresentation of genes belonging to vomeronasal receptor family 2. These receptors are known to play a key role in recognition of chemical cues that handle information about genetic identity. Interestingly, four of five of these differentially expressed receptors belong to the same phylogenetic cluster, suggesting specialization of a group of closely related receptors in the recognition of odorant signals that may allow subspecies recognition and assortative mating.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Prohexadione-calcium (Pro-Ca) transient inhibits 2-Oxoglutarate-dependent dioxygenases and causes significant changes in the flavonoid spectrum of apple. In the present study the influence of two autumn preharvest applications of Pro-Ca on the polyphenol metabolism in apple peel during the advanced maturation was investigated. Pro-Ca was sprayed in two doses, approximately five and 3 weeks before the technological maturity. Changes in the concentrations of hydroxycinnamic acids, dihydrochalcones, flavonols, flavanols and anthocyanins as well as their related gene expression and enzyme activities in the apple peel were monitored six times during the advanced maturation until the technological maturity of the fruits. To evaluate its influence on red coloration differences in the chromatic values a*, h° and L* between the treated and untreated apples were monitored. The parameters showed a temporary effect of Pro-Ca on the intensity of red coloration, which was not detected anymore at the technological maturity of apples. The application of Pro-Ca decreased the flavanone 3-hydroxylase activity and slightly inhibited activities of all the enzymes analyzed. Concomitantly, the concentrations of anthocyanins in the peel of the treated apples decreased, whereas the concentrations of hydroxycinnamic acids, dihydrochalcones and flavan 3-ols increased. Flavonol concentrations, however, remained unchanged. The expression of ANS, ANR, FGT and MYB10 was downregulated after the Pro-Ca treatment. The results indicate that the autumn application of Pro-Ca modulates the biosynthetic pathway resulting in distinct changes in the flavonoid composition in the apple peel of ‘Braeburn’ apples. However, the changes are temporary and are generally suspended during apple storage.  相似文献   

15.
16.
17.
18.
A cDNA for 1-pyrroline-5-carboxylate (P5C) synthetase (cOsP5CS), an enzyme involved in the biosynthesis of proline, was isolated and characterized from a cDNA library prepared from 14-day-old seedlings of Oryza sativa cv. Akibare. The deduced amino acid sequence of the P5CS protein (OsP5CS) from O. sativa exhibited 74.2% and 75.5% homology to that of the P5CS from Arabidopsis thaliana and Vigna aconitifolia, respectively. Northern blot analysis revealed that the gene for P5CS (OsP5CS) was induced by high salt, dehydration, treatment of ABA and cold treatment, while it was not induced by heat treatment. Simultaneously, accumulation of proline was observed as a result of high salt treatment in O. sativa. Moreover, the levels of expression of OsP5CS mRNA and content of proline under salt stress condition were compared between a salt-tolerant cultivar, Dee-gee-woo-gen (DGWG) and a salt-sensitive breeding line, IR28. It was observed that the expression of the P5CS gene and the accumulation of proline in DGWG steadily increased, whereas those in IR28 increased slightly.  相似文献   

19.
Mutations of the segmentation gene Krüppel (Kr) cause deletions of contiguous sets of body segments from the middle region of the Drosophila embryo. We have monitored expression in situ of three other genes implicated in the establishment of the body plan, namely hairy (h), fushi tarazu (ftz) and engrailed (en), in mutant Kr embryos. Our results show that the pattern of expression of all three genes depends upon Kr+ activity and are consistent with a hierarchical model of segmentation gene activity. In addition, we find that the initial expression of the homoeotic selector gene Ultrabithorax(Ubx) follows a novel pattern in Kr- embroys indicating a close integration of the spatial control of homoeotic and segmantation gene expression.  相似文献   

20.
There has been considerable interest in the way that chromatin is spatially organised within the cell nucleus and how that may relate to gene expression and its control. New molecular techniques have identified looped chromatin domains at the mammalian beta-globin and the Drosophila hsp70 loci. Looped domains may insulate chromatin from the influence of neighbouring domains, and the bases of loops may also act to concentrate proteins locally within the nucleus. The spatial clustering of sequences from the Drosophila bithorax complex, located in trans, has also been demonstrated. An emerging theme is that bringing DNA and proteins together within a defined sub-region of the nuclear volume facilitates both the activation and the repression of gene expression. Nuclear compartments may also be involved in the post-translational modification of proteins by sumoylation and ubiquitylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号