首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to unpredictability of both food availability and core offspring failure, parents of many avian species initially produce more offspring than they commonly rear (overproduction). When parental investment is insufficient to raise the whole brood the handicap of hatching last means ‘marginal’ chicks are less likely to survive if brood reduction occurs. Conversely, if marginal offspring are required as replacements for failed ‘core’ chicks, or parental investment is sufficient to rear the whole brood, the handicap imposed on marginal chicks must be reversible if overproduction is to be a viable strategy. I investigated the ability of marginal offspring to overcome the handicap imposed by hatching asynchrony using a combination of a field experiment, designed to manipulate both the amount of total competition and the relative competitive ability of chicks within a brood, and data on the growth and survival of unmanipulated, three‐chick broods from three consecutive years. The results indicate that, even when resources are abundant, marginal offspring do not begin to overcome the competitive handicap imposed by hatching asynchrony until the period of growth when energetic requirements reach their peak, and subsequent survival to fledging is almost assured. This is apparently a consequence of parents controlling allocation of early parental investment, so that any brood reduction ‘decisions’ can be left as late as possible. Marginal chicks initially channel resources into maintaining mass, relative to skeletal size, as a buffer against starvation. However this also means competitiveness is reduced, so if conditions are poor marginal chicks are rapidly out‐competed, lose condition and die. Conversely, when food availability is good marginal offspring devote more resources to skeletal growth and quickly close the gap on their core siblings, meaning the handicap is reversible. The benefits of overproduction and hatching asynchrony as reproductive strategies to maximise success in Lesser Black‐backed Gulls are discussed in relation to the reproductive alternatives.  相似文献   

2.
Life history theory predicts that natural selection favours parents who balance investment across offspring to maximize fitness. Theoretical studies have shown that the optimal level of parental investment from the offspring's perspective exceeds that of its parents, and the disparity between the two generates evolutionary conflict for the allocation of parental investment. In various species, the offspring hatch asynchronously. The age hierarchy of the offspring usually establishes competitive asymmetries within the brood and determines the allocation of parental investment among offspring. However, it is not clear whether the allocation of parental investment determined by hatching pattern is optimal for parent or offspring. Here, we manipulated the hatching pattern of the burying beetle Nicrophorus quadripunctatus to demonstrate the influence of hatching pattern on the allocation of parental investment. We found that the total weight of a brood was largest in the group that mimicked the natural hatching pattern, with the offspring skewed towards early hatchers. This increases parental fitness. However, hatching patterns with more later hatchers had heavier individual offspring weights, which increases offspring fitness, but this hatching pattern is not observed in the wild. Thus, our study suggests that the natural hatching pattern optimizes parental fitness, rather than offspring fitness.  相似文献   

3.
Parental care should be selected to respond to honest cues that increase offspring survival. When offspring are parasitised, the parental food compensation hypothesis predicts that parents can provision extra food to compensate for energy loss due to parasitism. Chick begging behaviour is a possible mechanism to solicit increased feeding from attending parents. We experimentally manipulated parasite intensity from Philornis downsi in nests of Darwin's small ground finch (Geospiza fuliginosa) to test its effects on chick begging intensity and parental food provisioning. We used in‐nest video recordings of individually marked chicks to quantify nocturnal parasite feeding on chicks, subsequent diurnal chick begging intensity and parental feeding care. Our video analysis showed that one chick per brood had the highest parasite intensity during the night (supporting the tasty chick hypothesis) and weakest begging intensity during the day, which correlated with low parental care and rapid death. We observed sequential chick death on different days rather than total brood loss on a given day. Our within‐nest video images showed that (1) high nocturnal larval feeding correlated with low diurnal begging intensity and (2) parent birds ignored weakly begging chicks and provisioned strongly begging chicks. Excluding predation, all parasite‐free chicks survived (100% survival) and all parasitised chicks died in the nest (100% mortality). Weak begging intensity in parasitised chicks, which honestly signalled recent parasite attack, was not used as a cue for parental provisioning. Parents consistently responded to the strongest chick in both parasitised and parasite‐free nests.  相似文献   

4.
Maternal effects occur when the mother's phenotype influences her offspring's phenotype. In birds, differential allocation in egg yolk components can allow mothers to compensate for the competitive disadvantage of junior chicks. We hypothesize that the parent–older chick conflict peaks at intermediate conditions: parents benefit from the younger chick(s) survival, but its death benefits the older chick in terms of growth and survival. We thus expect maternal compensation to follow a bell‐shaped pattern in relation to environmental conditions. We studied a black‐legged kittiwake (Rissa tridactyla) population where previous results revealed increased allocation of yolk testosterone in younger as compared to older chicks in intermediate conditions, in line with our theoretical framework. We therefore predicted a maternally induced increase in aggressiveness, growth, and survival for younger chicks born in intermediate environmental conditions. Controlling for parental effects and chick sex, we manipulated food availability before egg laying to create a situation with intermediate (Unfed group) and good (Fed group) environmental conditions. Within each feeding treatment, we further created experimental broods where the natural hatching order was reversed to maximize our chances to observe an effect of feeding treatment on the younger chicks' aggressiveness. As predicted, we found that chick aggressiveness was higher in younger chicks born from the Unfed group (i.e., in intermediate environmental conditions), but only when they were put in a senior position, in reversed broods. Predictions on growth and survival were not confirmed. Mothers thus seem to favor the competitiveness of their younger chick in intermediate conditions via egg yolk components, but our study also suggests that hatching asynchrony need to be small for maternal compensation to be efficient. We emphasize the need for further studies investigating other chick behaviors (e.g., begging) and focusing on the relative role of different yolk components in shaping parent–offspring conflict over sibling competition.  相似文献   

5.
Intraclutch egg size variation may non‐adaptively result from nutritional/energetic constraints acting on laying females or may reflect adaptive differential investment in offspring in relation to laying/hatching order. This variation may contribute to size hierarchies among siblings already established due to hatching asynchrony, and resultant competitive asymmetries often lead to starvation of the weakest nestling within a brood. The costs in terms of chick mortality can be high. However, the extent to which this mortality is egg size‐mediated remains unclear, especially in relation to hatching asynchrony which may operate concomitantly. I assessed effects of egg size and hatching asynchrony on nestling development and survival of Herring Gulls (Larus argentatus), where the smaller size and later hatching of c‐eggs may represent a brood‐reduction strategy. To analyze variation in egg size, I recorded the laying order and laying date of 870 eggs in 290 three‐egg clutches over a 3‐yr period (2010–2012). I measured hatchlings and monitored growth and survival of 130 chicks from enclosed nests in 2011 and 2012. The negative effect of laying date (β = ?0.18 ± SE 0.06, P = 0.002) on c‐egg size possibly reflected the fact that late breeders were either low quality or inexperienced females. The mass, size, and condition of hatchling Herring Gulls were positively related to egg size (all P < 0.0001). C‐chicks suffered from increased mortality risk during the first 12 d, identified as the brood‐reduction period in my study population. Although intraclutch variation in egg size was not directly related to patterns of chick mortality, I found that smaller relative egg size interactively increased differences in relative body condition of nestlings, primarily brought about by the degree of hatching asynchrony during this brood‐reduction period. Thus, the value of relatively small c‐eggs in Herring Gulls may lie in reinforcing brood reduction through effects on nestling body condition. A reproductive strategy Herring Gulls might have adopted to maintain a three‐egg clutch, but that also enables them to adjust the number of chicks they rear relative to the prevailing environmental conditions and to their own condition during the nestling stage.  相似文献   

6.
Parent and offspring behaviors are expected to act as both the agents and targets of selection. This may generate parent–offspring coadaptation in which parent and offspring behaviors become genetically correlated in a way that increases inclusive fitness. Cross‐fostering has been used to study parent–offspring coadaptation, with the prediction that offspring raised by non‐relatives, or parents raising non‐relatives, should suffer fitness costs. Using long‐term data from more than 400 partially crossed broods of blue tits (Cyanistes caeruleus), we show that there is no difference in mass or survival between crossed and non‐crossed chicks. However, previous studies for which the evidence for parent–offspring coadaptation is strongest compare chicks from fully crossed broods with those from non‐crossed broods. When parent–offspring coadaptation acts at the level of the brood then partial cross‐fostering experiments are not expected to show evidence of coadaptation. To test this, we performed an additional experiment (163 broods) in which clutches were either fully crossed, non‐crossed, or partially crossed. In agreement with the long‐term data, there was no evidence for parent–offspring coadaptation on offspring fitness despite high power. In addition there was no evidence of effects on parental fitness, nor evidence of sibling coadaptation, although the power of these tests was more modest.  相似文献   

7.
Sublethal effects of predation constitute an important part of predation effects, which may modulate prey population and community dynamics. In birds, the risk of nest predation may cause a reduction in parental activity in the care of offspring to reduce the chance of being detected by predators. In addition, parents may modify their parental food allocation preferences within the brood in response to predation risk. Our aim in this study was to evaluate the effects of risk of nest predation on parental care and within‐nest food allocation in the European Roller (Coracias garrulus), an asynchronously hatching bird. We manipulated brood predation risk by placing a snake model near the nests that simulates the most common nest predator in the Mediterranean region. Our results show that males but not females increased their provisioning rate when they were exposed to the model and that despite this, nestlings’ body mass decreased in response to this temporary increase in predation risk. We did not find evidence that parents changed their food allocation strategy towards senior or junior nestlings in their nests in response to predation risk. These results show that the European roller modifies parental care in response to their perception of predation risk in the nest and a sex‐specific sensitivity to the threat, which suggests a different perception of offspring reproductive value by parents. Finally, our results show that changes in parental behaviour in response to nest predation risk might have consequences for nestling fitness prospects.  相似文献   

8.
Order of birth has profound consequences on offspring across taxa during development and can have effects on individuals later in life. In birds, differential maternal allocation and investment in their progeny lead to variance in the environmental conditions that offspring experience during growth within the brood. In particular, laying and hatching order have been proposed to influence individual quality during the growing period, but little is known about the fitness consequences that these two factors have for offspring from a lifetime perspective. We explored the effect of laying and hatching order on post‐fledgling survival (measured as recruitment probability) and lifetime reproductive success (LRS) in Common Kestrels Falco tinnunculus, using a long‐term and individual‐based dataset. First‐hatched chicks showed higher survival probability and LRS than their siblings. This effect was not due to body condition of the individuals at adulthood, the quality of their mates or the reproductive outcome compared with later‐hatched individuals. Instead, first‐hatched chicks had a higher recruitment probability. This could be explained by the higher body condition attained by first‐hatched chicks at the end of the nesting period, perhaps due to an enhanced competitive advantage for food over their siblings at the time of hatching. Laying order, in contrast to hatching order, appeared to have little or no effect on LRS. Our results suggest that hatching order within siblings predicts fitness, and that better early‐life conditions during growth experienced by first‐hatched chicks improve first survival and then recruitment, resulting in an enhanced LRS.  相似文献   

9.
We hypothesized that increasing chick plasma testosterone concentrations, transmitted from the mothers via their eggs, enhances survival of their offspring and that the fitness of the young, depending on the maternal hormones, is influenced by parental quality. To test our hypotheses we distinguished the broods of white storks Ciconia ciconia L. where chicks died and those where all chicks survived. We analysed the plasma testosterone concentrations in the chicks, the ability of the chicks to be first to receive food and the mass of chicks before fledging in relation to their hatching order and recorded the body mass of parents and food mass delivered by them.
Female storks used the asymmetries in testosterone concentrations within a brood to control brood size and adjusted the number of young hatched to match the parental ability to rear offspring. Females of poor condition altered the testosterone concentrations to produce large differences between the chicks: The first-hatched chicks, which had high plasma testosterone levels, responded faster to the feeding parent and received more food than did their younger siblings. One or two later-hatched chicks, which had lower testosterone levels, died in these broods. Females in good condition produced small differences in testosterone concentrations between the chicks and all chicks survived in their brood. Chicks that were raised by the females of poor condition in reduced broods were heavier than chicks that were raised by females of good condition in broods where all chicks survived.
We suggest that the control of brood size by testosterone concentration, transmitted by the mother to the chicks, is a hormonal means of condition-dependent reproductive strategy in the white stork.  相似文献   

10.
The onset of incubation before the end of laying imposes asynchrony at hatching and, therefore, a size hierarchy in the brood. It has been argued that hatching asynchrony might be a strategy to improve reproductive output in terms of quality or quantity of offspring. However, little is known about the mediating effect of hatching asynchrony on offspring quality when brood reduction occurs. Here, we investigate the relationship between phenotypic quality and hatching asynchrony in Common Kestrel Falco tinnunculus nestlings in Spain. Hatching asynchrony did not increase breeding success or nestling quality. Furthermore, hatching asynchrony and brood reduction had different effects on nestlings’ phytohaematogglutinin (PHA)‐mediated immune response and nestling growth. In asynchronous and reduced broods (in which at least one nestling died), nestlings showed a stronger PHA‐mediated immune response and tended to have a smaller body size compared with nestlings raised in synchronous and reduced broods. When brood reduction occurred in broods hatched synchronously, there was no effect on nestling size, but nestlings had a relatively poor PHA‐mediated immune response compared with nestlings raised in asynchronous and reduced broods. We suggest that resources for growth can be directed to immune function only in asynchronously hatched broods, resulting in improved nestling quality, as suggested by their immune response. We also found that males produced a greater PHA‐mediated immune response than females only in brood‐reduced nests without any effect on nestling size or condition, suggesting that females may trade off immune activities and body condition, size or weight. Overall, our results suggest that hatching pattern and brood reduction may mediate resource allocation to different fitness traits. They also highlight that the resolution of immune‐related trade‐offs when brood reduction occurs may differ between male and female nestlings.  相似文献   

11.
Offspring quality decreases with parental age in many taxa, with offspring of older parents exhibiting reduced life span, reproductive capacity, and fitness, compared to offspring of younger parents. These “parental age effects,” whose consequences arise in the next generation, can be considered as manifestations of parental senescence, in addition to the more familiar age‐related declines in parent‐generation survival and reproduction. Parental age effects are important because they may have feedback effects on the evolution of demographic trajectories and longevity. In addition to altering the timing of offspring life‐history milestones, parental age effects can also have a negative impact on offspring size, with offspring of older parents being smaller than offspring of younger parents. Here, we consider the effects of advancing parental age on a different aspect of offspring morphology, body symmetry. In this study, we followed all 403 offspring of 30 parents of a bilaterally symmetrical, clonally reproducing aquatic plant species, Lemna turionifera, to test the hypothesis that successive offspring become less symmetrical as their parent ages, using the “Continuous Symmetry Measure” as an index. Although successive offspring of aging parents older than one week became smaller and smaller, we found scant evidence for any reduction in bilateral symmetry.  相似文献   

12.
Food allocation in many asynchronously hatching bird species favours large, competitively superior chicks. In contrast, food is usually distributed equally within broods of crimson rosellas, Platycercus elegans, implying that parents do not simply feed the most competitive chick. We used two temporary removal experiments to manipulate hunger of: (1) individual first- or last-hatched chicks, or (2) the whole brood. When only a single chick was hungry, parents compensated fully and chicks gained the same mass over the day as during controls. Mothers and fathers, however, responded in different ways to chick hunger. Mothers did not strongly alter their food allocation when a single chick was hungry, and controlled the distribution of food by refusing to feed first-hatched chicks when they were hungry and by moving more during feeds. In contrast, fathers allocated more food to hungry last-hatched chicks. When the whole brood was hungry, parents were unable to compensate chicks and all chicks lost mass over the day. In these conditions, mothers preferentially fed first-hatched chicks, while fathers fed all chicks equally. Our results show that both mothers and fathers were able to discriminate and selectively feed chicks, but that parents responded differently to changes in chick hunger within the brood. Fathers responded more strongly to variation in chick hunger within the brood, suggesting they reallocate food based on short-term changes in hunger. Mothers distributed food preferentially to last-hatched chicks except when the whole brood was hungry, when they switched to favouring first-hatched chicks. This pattern is consistent with a strategy of adaptive brood reduction when food is scarce. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

13.
We examine brood size effects on the behaviour of wintering parent and juvenile brent geese (Branta bernicla hrota) to test predictions of shared and unshared parental care models. The behaviour of both parents and offspring appear to be influenced by declining food availability over the winter. Parental vigilance increased with brood size and may be explained by vigilance having functions in addition to antipredator behaviour where the benefits are shared among the brood. There was no increase in parental aggression with brood size and this does not fit the prediction of shared care. Nevertheless, large families are able to monopolize better feeding areas compared with smaller families and large families static feed more but walk feed less than do small families, the former apparently being the preferred mode. The presence of additional young, rather than increasing the amount of parental aggression, seems to enhance the family's competitive ability. Because parents with large broods benefit from enhanced access to resources there is likely to be no additional significant cost in the parental care of larger broods (sensu Trivers 1972 ).  相似文献   

14.
One of the fundamental principles of the life-history theory is that parents need to balance their resources between current and future offspring. Deserting the dependent young is a radical life-history decision that saves resources for future reproduction but that may cause the current brood to fail. Despite the importance of desertion for reproductive success, and thus fitness, the neuroendocrine mechanisms of brood desertion are largely unknown. We investigated two candidate hormones that may influence brood desertion in the Kentish plover Charadrius alexandrinus: prolactin ('parental hormone') and corticosterone ('stress hormone'). Kentish plovers exhibit an unusually diverse mating and parental care system: brood desertion occurs naturally since either parent (the male or the female) may desert the brood after the chicks hatch and mate with a new partner shortly after. We measured the hormone levels of parents at hatching using the standard capture and restraint protocol. We subsequently followed the broods to determine whether a parent deserted the chicks. We found no evidence that either baseline or stress-induced prolactin levels of male or female parents predicted brood desertion. Although stress-induced corticosterone levels were generally higher in females compared with males, individual corticosterone levels did not explain the probability of brood desertion. We suggest that, in this species, low prolactin levels do not trigger brood desertion. In general, we propose that the prolactin stress response does not reflect overall parental investment in a species where different parts of the breeding cycle are characterized by contrasting individual investment strategies.  相似文献   

15.
Parent–offspring conflict over the supply of parental care results in offspring attempting to exert control using begging behaviours and parents attempting to exert control by manipulating brood sizes and hatching patterns. The peak load reduction hypothesis proposes that parents can exert control via hatching asynchrony, as the level of competition amongst siblings is determined by their age differences and not by their growth rates. Theoretically, this benefits the parents by reducing both the peak load of the offspring's demand and their overall demand for food and benefits the offspring by reducing the amplification of their competition. However, the peak load reduction hypothesis has only received mixed support. Here, we describe an experiment where we manipulated the hatching patterns of domesticated zebra finch Taeniopygia guttata broods and quantified patterns of nestling begging and parental feeding effort. There was no difference in the begging intensity of nestlings raised in asynchronous or experimentally synchronous broods, yet parental feeding effort was lower when provisioning asynchronous broods and particularly so when levels of nestling begging were low. Further, both parents acted in unison, as there was no evidence of parentally biased favouritism in relation to hatching pattern. Therefore, our study provided empirical support for the prediction that hatching asynchrony reduces the feeding effort of parents, thereby providing empirical support for the peak load reduction hypothesis.  相似文献   

16.
The most critical assumption of communication models regarding parent–offspring conflict is that food solicitation displays of genetic offspring are honest signals to elicit beneficial parental care. A critical requirement of honesty is the reliable change of perceivable aspects of begging calls with physiological needs. We experimentally tested whether and how the acoustic structure and begging call rate of individual Grey Warbler Gerygone igata nestlings change with hunger level and age. We also examined a rarely documented component of chick begging calls, namely the temporal dynamics of acoustic modulation after nestlings heard parental feeding calls. Begging call structure narrowed in frequency range and, surprisingly, decreased in amplitude as chick hunger levels increased. We also found that begging calls changed with chick age, with the frequency increasing and the duration decreasing for older chicks. These results indicate that the acoustic properties of nestling Grey Warbler begging calls are complex and may be used to signal several aspects of nestling traits, including hunger level and age (or size, a correlate of age). Overall, begging calls of Grey Warbler chicks appear to be honest, implying that parents are likely to benefit from relying on the acoustic features of their progeny’s calls which predict chick need. Our results have important implications regarding the reliability and information content of nestling solicitation signals for the brood parasite shining cuckoo Chrysococcyx lucidus exploiting Grey Warbler parental care, in that these begging‐call mimetic specialist cuckoos might also need to match closely the dynamics of acoustic features of their host chicks’ calls.  相似文献   

17.
In birds with asynchronous hatching, hatching order is an important factor in determining offspring phenotype. Many previous studies have demonstrated that later‐hatched offspring show reduced growth and survival during development. However, few studies have followed individuals from hatching to adulthood to test whether the effects of hatching order persist into later life. Here, we explore patterns of hatching order and fitness‐related traits in the Pukeko Porphyrio melanotus melanotus, a cooperatively breeding bird that lives in stable social groups that form linear dominance hierarchies. Pukeko groups sometimes contain two breeding females that lay eggs in the same nest (joint‐laying). Thus, competition between nest‐mates can influence the relative fitness of each laying female. We show that in both single‐clutch and joint‐clutch nests, earlier‐hatched Pukeko chicks grow faster and survive better than later‐hatched brood‐mates. Moreover, earlier‐hatched chicks achieve higher dominance ranks as adults, making this study one of the first to find a relationship between hatching order and adult dominance in wild birds. Finally, we show that in groups with two breeding females, the chicks of the primary female hatch earlier than the chicks of the secondary female. As a result, the offspring of the primary female may be at a competitive advantage, which could have important implications for social dynamics in this species.  相似文献   

18.
If parents can invest resources optimally per offspring, they should adjust the amount of investment in an offspring according to environmental heterogeneity. Many studies have demonstrated changes in egg size or the amount of resource supplied in response to environmental heterogeneity. However, it remains unclear whether parents simply know the resource type a priori or can assess resource quality and adjust the quantity of investment accordingly. We examined the parental capability to adjust the amount of investment per offspring by providing Onthophagus atripennis dung beetle parents with one of three dung types of different quality: monkey dung (high quality), cow dung (low quality), or a mixture of monkey and cow dung (medium quality). The beetle parents cooperatively produce dung brood masses each with one egg under the ground. The size of a brood mass, on which a larva can only feed until adult, represents a large part of the amount of investment. Parents produced a greater number of smaller brood masses given high‐quality resource, while they compensated for low quality of the resource by providing a larger amount of the resource, at the cost of offspring number. However, despite this compensation in the amount of food, offspring raised on low‐quality food was still smaller than offspring raised on high‐quality food. Thus, O. atripennis parents assessed resource quality partly and adjusted the amount of resource provided for their offspring.  相似文献   

19.
Parents ought to restrict costly parental care to their genetic offspring and, particularly when the risk of misdirecting care is high, parent‐offspring recognition may evolve. I tested whether adult cave swallows, which nest in dense colonies and feed fledglings in mixed‐family groups, discriminate against unrelated young, using temporary chick transfers at two nestling ages and a cross‐fostering experiment. Temporary chick transfers indicated that parents bias feedings toward their own offspring near fledging (18 d) but not at about halfway through the nesting period (10 d). I also examined how parents learn to identify their offspring by cross‐fostering young 3 d after hatching and testing parental response 2 wks later. Adults did not favor their own offspring over unrelated nestlings when both were unfamiliar to the focal parents. However, when parents encountered two of their own offspring, one of which was reared by foster parents, they preferentially fed the familiar nestling. By recognizing young, cave swallow parents reduce some risks of misdirected parental investment (mobile fledglings) but not others (extra‐pair young and intraspecific brood parasitism).  相似文献   

20.
Uniparental offspring desertion occurs in a wide variety of avian taxa and usually reflects sexual conflict over parental care. In many species, desertion yields immediate reproductive benefits for deserters if they can re‐mate and breed again during the same nesting season; in such cases desertion may be selectively advantageous even if it significantly reduces the fitness of the current brood. However, in many other species, parents desert late‐season offspring when opportunities to re‐nest are absent. In these cases, any reproductive benefits of desertion are delayed, and desertion is unlikely to be advantageous unless the deserted parent can compensate for the loss of its partner and minimize costs to the current brood. We tested this parental compensation hypothesis in Hooded Warblers Setophaga citrina, a species in which males regularly desert late‐season nestlings and fledglings during moult. Females from deserted nests effectively doubled their provisioning efforts, and nestlings from deserted nests received just as much food, gained mass at the same rate, and were no more likely to die from either complete nest predation or brood reduction as young from biparental nests. The female provisioning response, however, was significantly related to nestling age; females undercompensated for male desertion when the nestlings were young, but overcompensated as nestlings approached fledging age, probably because of time constraints that brooding imposed on females with young nestlings. Overall, our results indicate that female Hooded Warblers completely compensate for male moult‐associated nest desertion, and that deserting males pay no reproductive cost for desertion, at least up to the point of fledging. Along with other studies, our findings support the general conclusion that late‐season offspring desertion is likely to evolve only when parental compensation by the deserted partner can minimize costs to the current brood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号