首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Over the past century, ponderosa pine–dominated landscapes of the southwestern United States have been altered by human activities such as grazing, timber harvest, road building, and fire exclusion. Most forested areas within these landscapes now show increased susceptibility to stand‐replacing fires, insect outbreaks, and drought‐related mortality. Recent large wildfires in the region have spurred public interest in large‐scale fuel reduction and restoration programs, which create perceived and real conflicts with the conservation of biodiversity. Conservation concerns include the potential for larger road networks, soil and understory disturbance, exotic plant invasion, and the removal of large trees in treated areas. Pursuing prescribed burning, thinning, or other treatments on the broad scale that many scientists and managers envision requires the reconciliation of ecological restoration with biodiversity conservation. This study presents recommendations from a workshop for integrating the principles and practices of restoration ecology and conservation biology, toward the objective of restoring the composition, structure, and function of dry ponderosa pine forests. Planning on the scale of hundreds of thousands of hectares offers opportunities to achieve multiple objectives (e.g., rare species protection and restoration of ecological structures and processes) that cannot easily be addressed on a site‐by‐site basis. However, restoration must be coordinated with conservation planning to achieve mutual objectives and should include strict guidelines for protection of rare, declining, and sensitive habitats and species.  相似文献   

4.
Aim Woody plant expansion and infilling in grasslands and savannas are occurring across a broad range of ecosystems around the globe and are commonly attributed to fire suppression, livestock grazing, nutrient enrichment and/or climate variability. In the western Great Plains, ponderosa pine (Pinus ponderosa) woodlands are expanding across broad geographical and environmental gradients. The objective of this study was to reconstruct the establishment of ponderosa pine in woodlands in the west‐central Great Plains and to identify whether it was mediated by climate variability. Location Our study took place in a 400‐km wide region from the base of the Front Range Mountains (c. 105° W) to the central Great Plains (c. 100° W) and from Nebraska (43° N) to northern New Mexico (36° N), USA. Methods Dates for establishment of ponderosa pine were reconstructed with tree rings in 11 woodland sites distributed across the longitudinal and latitudinal gradients of the study area. Temporal trends in decadal pine establishment were compared with summer Palmer Drought Severity Index (PDSI). Annual trends in pine establishment from 1985 to 2005 were compared with seasonal PDSI, temperature and moisture availability. Results Establishment of ponderosa pine occurred in the study area in all but one decade (1770s) between the 1750s and the early 2000s, with over 35% of establishment in the region occurring after 1980. Pine establishment was highly variable among sites. Across the region, decadal pine establishment was persistently low from 1940 to 1960, when PDSI was below average. Annual pine establishment from 1985 to 2005 was positively correlated with summer PDSI and inversely correlated with minimum spring temperatures. Main conclusions Most ponderosa pine woodlands pre‐date widespread Euro‐American settlement of the region around c. ad 1860 and currently have stable tree populations. High variability in the timing of establishment of pine among sites highlights the multiplicity of factors that can drive woodland dynamics, including land use, fire history, CO2 enrichment, tree population dynamics and climate. Since the 1840s, the influence of climate was most notable across the study area during the mid‐20th century, when the establishment of pine was suppressed by two significant droughts. The past sensitivity of establishment of ponderosa pine to drought suggests that woodland expansion will be negatively affected by predicted increases in temperature and drought in the Great Plains.  相似文献   

5.
The primary objective of this study was to determine if gradually increasing levels of atmospheric CO2, as opposed to 'step' increases commonly employed in controlled studies, have a positive impact on radial growth rates of ponderosa pine (Pinus ponderosa) in natural environments, and to determine the spatial extent and variability of this growth enhancement. We developed a series of tree-ring chronologies from minimally disturbed sites across a spectrum of environmental conditions. A series of difference of means tests were used to compare radial growth post-1950, when the impacts of rising atmospheric CO2 are best expressed, with that pre-1950. Spearman's correlation was used to relate site stress to growth-rate changes. Significant increases in radial growth rates occurred post-1950, especially during drought years, with the greatest increases generally found at the most water-limited sites. Site harshness is positively related to enhanced radial growth rates. Atmospheric CO2 fertilization is probably operative, having a positive effect on radial growth rates of ponderosa pine through increasing water-use efficiency. A CO2-driven growth enhancement may affect ponderosa pine growing under both natural and controlled conditions.  相似文献   

6.
Mortality and growth of self and outcross families of three wind-pollinated, mixed-mating, long-lived conifers, Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and noble fir (Abies procera) were followed from outplanting to age 26 (25 for noble fir) in spaced plantings at a common test site. Response to inbreeding differed greatly among species over time and in all regards. Only Douglas-fir and noble fir will be contrasted here, because ponderosa pine usually was intermediate to the other two in its response to inbreeding. In earlier reports, compared to noble fir Douglas-fir had a higher rate of primary selfing and larger inbreeding depression in seed set. Douglas-fir continued to have higher inbreeding depression in nursery and early field survival. The species differed in time courses of inbreeding depression in height and in allocation of growth due to crowding. Between ages 6 and 12, the relative elongation rate (dm · dm?1 · yr?1) of Douglas-fir was significantly greater in the selfs than in the outcrosses. The response was not observed in noble fir. At final measurement, inbreeding depression in diameter relative to inbreeding depression in height was greater in Douglas-fir than in noble fir. At final measurement inbreeding depression in height was inversely related to inbreeding depression in survival. Cumulative inbreeding depressions from time of fertilization to final measurement were 0.98, 0.94, and 0.83 for Douglas-fir, ponderosa pine, and noble fir, respectively, which indicates that selfs will not contribute to the mature, reproductive populations.  相似文献   

7.
8.
美国黄松组织培养不定根诱导的研究   总被引:7,自引:0,他引:7  
以GD、SH和1/2SH基本培养基对美国黄松不定芽进行不定根的诱导。试验结果表明基本培养基的种类对不定芽形成不定根起主要作用。在1/2SH培养基上附加0.5mg/L的NAA不定根的诱导率为3.3%。试验首次在离体培养条件下,以美国黄松种胚为外植体获得了再生小植株。  相似文献   

9.
Seasonal activity of superoxide dismutase (SOD, EC 1.15.1.1). ascorbate peroxidase (APOD, EC 1.11.1.11) and guaiacol-oxidizing enzymes (GPODs, EC 1.11.1.7) was examined in needles of 12- to 15-year-old ponderosa pine (Pinus ponderosa Laws.) trees which received ozone (O3) and acid precipitation treatment. Individual branches were enclosed in branch exposure chambers delivering either charcoal-filtered (O3-reduced) air, ambient air, or air with twice ambient (2 x ambient) concentrations of O3. Acid precipitation treatments were rain of pH 3.0 or 5.1 or no rain. Changes in antioxidant enzyme activity were not a consistent response to O3 fumigation or acid precipitation, but when observed, they occurred most often in the O3-sensitive clone and in symptomatic, fumigated branches. In the second year of fumigation. O3 fleck symptoms appeared on needles of the sensitive clone as early as July and APOD activities were significantly increased by O3 at all sampling dates. In the tolerant clone, antioxidant enzyme activities were not significantly changed by O3 in the first season of fumigation (March to December 1990), not even during an episode when ambient O3 concentrations reached 125 nl 1?1 (240 nl 1?1 in 2x ambient chambers). No foliar symptoms were observed on needles of the tolerant clone during this year. However, in the second year of fumigation (1992), O3 fleck symptoms were observed on the tolerant clone and APOD activities were significantly increased in previous-year needles. The tolerant clone had SOD, APOD, and GPOD activities at least 40% higher than those of the sensitive clone before fumigation and 65, 178, and 119% higher, respectively, during both years of fumigation. The higher constitutive levels of these enzymes may have protected against foliar injury in 1990, however in 1992 we concluded that the stimulations in antioxidant enzyme activities observed in symptomatic branches of both clones were a consequence of O3 injury. Total (intra- and extracellular) activities of the antioxidant enzymes did not appear to be good indicators of O3 tolerance. Phenotypically, the O3-tolerant clone was much more vigorous and in both years of fumigation, gas exchange rates were 30 to 71% higher than in the sensitive clone (P. D. Anderson, unpublished data). The greater vigor of the tolerant clone may allow more carbon allocation to protective and repair processes which include, but are not restricted to, the turnover of antioxidant enzymes and metabolites.  相似文献   

10.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

11.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

12.
13.
14.
15.
Mountain pine beetle (Dendroctonus ponderosae) outbreaks in western North American coniferous forests are increasing in size and severity. An understanding of wildlife population responses to pine beetle outbreaks is needed to inform habitat conservation strategies. We monitored 355 nests of 5 woodpecker species during 2 sampling periods, before (2003–2006) and after (2009–2014) the peak of a pine beetle outbreak in dry mixed conifer forest of Montana, USA. Three of 5 woodpecker species represented the beetle-foraging group: American three-toed (Picoides dorsalis), hairy (Dryobates villosus), and downy (D. pubescens) woodpeckers. The other 2 species studied were northern flicker (Colaptes auratus), a foraging and habitat generalist, and red-naped sapsucker (Sphyrapicus nuchalis), a sap forager and bark-gleaning insectivore. We analyzed daily survival rate of nests in relation to pine beetle outbreak (445,000 ha) severity and timing, along with covariates unrelated to the outbreak (temp, nest height, and nest tree diameter). Our results provided stronger evidence for relationships between woodpecker nest survival and the non-outbreak variables than those associated with outbreaks. Our results indicated limited support for nest survival relationships with beetle severity (annual and cumulative pine tree mortality at 0.81-ha and 314-ha scales). Nevertheless, we observed a significant increase in densities of hatched nests for beetle-foraging woodpeckers following the outbreak. Our results suggest that woodpeckers, particularly beetle foragers, respond numerically to pine beetle outbreaks through increased nesting densities more so than functionally via nest survival. © 2019 The Authors. Journal of Wildlife Management Published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

16.
While there is strong evidence for hydraulic redistribution (HR) of soil water by trees, it is not known if common mycorrhizal networks (CMN) can facilitate HR from mature trees to seedlings under field conditions. Ponderosa pine (Pinus ponderosa) seedlings were planted into root-excluding 61-microm mesh barrier chambers buried in an old-growth pine forest. After 2 yr, several mature trees were cut and water enriched in D(2)O and acid fuchsin dye was applied to the stumps. Fine roots and mycorrhizal root tips of source trees became heavily dyed, indicating reverse sap flow in root xylem transported water from stems throughout root systems to the root hyphal mantle that interfaces with CMN. Within 3 d, D(2)O was found in mesh-chamber seedling foliage > 1 m from source trees; after 3 wk, eight of 10 mesh-chamber seedling stem samples were significantly enriched above background levels. Average mesh-chamber enrichment was 1.8 x greater than that for two seedlings for which the connections to CMN were broken by trenching before D(2)O application. Even small amounts of water provided to mycorrhizas by HR may maintain hyphal viability and facilitate nutrient uptake under drying conditions, which may provide an advantage to seedlings hydraulically linked by CMN to large trees.  相似文献   

17.
18.
Carbon pools and fluxes along an environmental gradient in northern Arizona   总被引:15,自引:4,他引:11  
Carbon pools and fluxes were quantified along an environmentalgradient in northern Arizona. Data are presented on vegetation, litter, andsoil C pools and soil CO2 fluxesfrom ecosystems ranging from shrub-steppe through woodlands to coniferousforest and the ecotones in between. Carbon pool sizes and fluxes in thesesemiarid ecosystems vary with temperature and precipitation and are stronglyinfluenced by canopy cover. Ecosystem respiration is approximately 50percent greater in the more mesic, forest environment than in the dryshrub-steppe environment. Soil respiration rates within a site varyseasonally with temperature but appear to be constrained by low soilmoisture during dry summer months, when approximately 75% of totalannual soil respiration occurs. Total annual amount of CO2 respired across all sites ispositively correlated with annual precipitation and negatively correlatedwith temperature. Results suggest that changes in the amount and periodicityof precipitation will have a greater effect on C pools and fluxes than willchanges in temperature in the semiarid Southwestern United States.  相似文献   

19.
20.
  1. Managed low-severity surface fires are frequently implemented in efforts to restore disturbance processes to forests of North America; although the effects of managed fire on forest structure are well-studied, few studies investigate whether these disturbances cascade to impact pollinator communities.
  2. We analysed bee-habitat relationships in fire-treated (1- and 3-years post-treatment) and non-treated ponderosa pine stands in Colorado to test wild bee population responses.
  3. Observed bee richness and α-diversity were highest in stands 1-year post-fire and had more Anthophora, Bombus, Osmia and Lasioglossum spp. in comparison to 3-year post-fire and non-treated stands. Bee functional groups were responsive to treatments, with more below-ground nesting taxa present in stands 3 years post-fire.
  4. Floral richness was the highest mid-growing season (June, July) and within 1-year post-fire stands.
  5. A model analysing the effects of foraging and nesting habitat variation on bee assemblages indicated positive association between floral richness and bee α-diversity, but negative relationships with stand basal area. Nesting habitat was not associated with variation in bee assemblages.
  6. We conclude that managed fire has positive short-term effects on bee biodiversity that are likely mediated by floral richness. However, these effects were not detectable by 3 years post-treatment in the southern Rocky Mountain region.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号