首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Vigilance is amongst the most universal of anti‐predator strategies and commonly declines with increasing group size. We experimentally manipulated predation risk in a system with a known relationship between group size and vigilance levels to explore whether this relationship changes in response to elevated predation risk. We investigated the vigilance levels of Egyptian geese Alopochen aegyptiaca at eight golf courses in the western Cape, South Africa, to assess the perception of and reaction to predation risk. We manipulated predation risk by introducing trained Harris's hawks Parabuteo unicintus where avian predation was otherwise low or absent. The study confirmed the typical reduction in vigilance with group size on control sites, where the risk of predation is low. However, at experimental sites with elevated predation risk, a positive relationship between vigilance and group size was observed. We hypothesize that the mechanism for this relationship might be linked to social information transfer via copying behaviour and manipulation to induce vigilance. Thus, larger groups will have a higher probability of containing individuals with experience of elevated predation risk and their increased vigilance behaviour is copied by naïve individuals. This prediction is based on the intended outcome of introducing avian predation to make the geese feel less safe and to eventually leave the site as a management tool for controlling nuisance geese.  相似文献   

2.
Diurnal primates rely on visual monitoring behavior to collect various kinds of ecological and social information. Vigilance behavior is monitoring specifically to detect external threats. Previous studies of vigilance behavior were focused mainly on the influence of predation threats, whereas the influences of conspecific factors, such as intragroup threats, have been relatively unstudied. Individual vigilance is predicted to be inversely related to the group size or the number of individuals nearby if the main target of the vigilance is a predation threat and positively related if the main target of the vigilance is a conspecific threat. I studied wild chimpanzees (Pan troglodytes schweinfurthii) in Mahale Mountains National Park, Tanzania, and measured the vigilance duration when they are resting on the ground via 2-min focal observation. In both males and females, vigilance duration increased as the number of individuals nearby increased. This result agrees with the idea that the chimpanzees are vigilant toward other group members. In addition, maternal vigilance monitors and protects the safety of dependent offspring as the duration of maternal vigilance was longer when a dependent infant was separated from its mother than when the offspring was in contact with its mother. The results indicate that the vigilance behavior in wild chimpanzees was affected by conspecific factors.  相似文献   

3.
    
Abstract The negative correlation between the time individuals spend scanning the environment for predators and group size is usually explained by the benefit of corporate vigilance. However, this negative correlation may be explained additionally in terms of the ‘dilution effect’ and ‘selfish herd geometry’. Our experimental investigation of the scanning behaviour of free-living spotted turtle doves foraging at different shaped feeders revealed that flock geometry influenced individual scanning rates. The time spent scanning declined with group size less rapidly among birds foraging in linear flocks than among those foraging in more two-dimensional flocks. These results were not confounded by aggressive behaviour, and indicate that the benefits of foraging in groups include the so-called selfish herd geometry.  相似文献   

4.
It has long been thought that predation has had important ecological and evolutionary effects on primates as prey. Predation has been theorized to have been a major selective force in the evolution of hominids.1 In modern primates, behaviors such as active defense, concealment, vigilance, flight, and alarm calls have been attributed to the selective pressures of predation, as has group living itself. It is clear that primates, like other animals, have evolved ways to minimize their risk of predation. However, the extent to which they have been able to do so, given other constraints of living such as their own need to acquire food, has not yet been resolved. Perhaps most hotly debated is whether predation has been the primary selective force favoring the evolution of group living in primates. Part of the difficulty in resolving the debate lies in a paucity of direct evidence of predation. This is regrettable yet understandable since primatologists, by definition, focus on the study of primates, not predators of primates (unless these are also primates). Systematic direct evidence of the effects of predation can best be obtained by studying predators that are as habituated to observers as are their primate prey. Until this is done, we must continue to rely on opportunistic accounts of predation and predation attempts, and on systematically obtained indirect evidence. Such data reveal several interesting patterns: (1) although smaller primates may have greater predation rates than larger primates, even the largest primates are not invulnerable to predation; (2) the use by primates of unfamiliar areas can result in higher predation rates, which might be one pressure favoring philopatry, or site fidelity; (3) arboreal primates are at greater risk of predation when they are more exposed (at forest edges and tops of canopies) than in more concealed locations; (4) predation by mammalian carnivores may often be episodic; and (5) terrestrial primates may not experience greater predation than arboreal primates.  相似文献   

5.
6.
    
Social prey species respond to predation risk by modifying habitat selection and grouping behaviour. These responses may depend on both actual predation risk (predator probability of occurrence) and/or on perceived predation risk associated with habitat structure. Other factors like food availability and co-occurrence with other species may also affect habitat selection and group formation. We analyse habitat selection and grouping behaviour (group size and cohesion) of lesser rhea (Rhea pennata subsp. pennata), a ratite endemic of South America inhabiting steppe shrublands and grasslands, in relation to actual (puma probability of occurrence) and perceived (habitat structure: openness, visibility) predation risk, co-occurrence with other herbivore species and forage availability in the Chilean Patagonia. We used data from 9 sampling seasons in 5 years. Results show that habitat selection, group size and cohesion in lesser rhea were mainly driven by variables associated with perceived predation risk and by co-occurrence with other herbivores both during breeding and non–breeding season. As expected, lesser rhea preferred open habitats (vegas and grasslands) that allow a behaviour of ‘watch and run’ to avoid predation and formed larger groups in them. Moreover, lesser rhea positively selected year-round habitats where livestock occur, forming large groups during non–breeding season there. Group size and co-occurrence with other herbivores significantly decreased group cohesion, suggesting a reduction of perceived predation risk. Therefore, lesser rhea seems to take advantage of forming mixed interspecific groups to reduce predation risk. These results suggest that lesser rhea habitat selection and grouping behaviour are preferentially driven by factors related to perceived predation risk than by actual predator occurrence or food availability.  相似文献   

7.
Studies of the influence of fish aquaculture on benthic freshwater nematode assemblages are scarce, but could provide a way of gauging environmental effects. The abundance and diversity of nematode assemblages in response to Oreochromis niloticus aquaculture were investigated in Kafr El-Sheikh Governorate, Egypt, from July to November 2014 under conditions of irrigation (reference), fish farm pond with high Tilapia density, and fish farm pond effluent canal without fish. The nematode genera Adoncholaimus, Punctodora, Labronema, Oncholaimus and Odontolaimus were present at all sites. Environmental factors were not related to nematode distribution patterns. Tilapia predation and/or disturbance may explain reduced nematode abundance, especially of the largest genera, Adoncholaimus, Punctodora and Labronema at the fish farm site. The absence of fish from the drainage site allowed intergeneric nematode competitive exclusion, benefitting the largest nematodes and reducing diversity indices.  相似文献   

8.
An increasing number of studies have demonstrated phenotypic plasticity in brain size and architecture in response to environmental variation. However, our knowledge on how brain architecture is affected by commonplace ecological interactions is rudimentary. For example, while intraspecific competition and risk of predation are known to induce adaptive plastic modifications in morphology and behaviour in a wide variety of organisms, their effects on brain development have not been studied. We studied experimentally the influence of density and predation risk on brain development in common frog (Rana temporaria) tadpoles. Tadpoles grown at low density and under predation risk developed smaller brains than tadpoles at the other treatment combinations. Further, at high densities, tadpoles developed larger optic tecta and smaller medulla oblongata than those grown at low densities. These results demonstrate that ecological interactions - like intraspecific competition and predation risk - can have strong effects on brain development in lower vertebrates.  相似文献   

9.
    
Predators have a key role shaping competitor dynamics in food webs. Perhaps the most obvious way this occurs is when predators reduce competitor densities. However, consumption could also generate phenotypic selection on prey that determines the strength of competition, thus coupling consumptive and trait‐based effects of predators. In a mesocosm experiment simulating fish predation on damselflies, we found that selection against high damselfly activity rates – a phenotype mediating predation and competition – weakened the strength of density dependence in damselfly growth rates. A field experiment corroborated this finding and showed that increasing damselfly densities in lakes with high fish densities had limited effects on damselfly growth rates but generated a precipitous growth rate decline where fish densities were lower – a pattern expected because of spatial variation in selection imposed by predation. These results suggest that accounting for both consumption and selection is necessary to determine how predators regulate prey competitive interactions.  相似文献   

10.
11.
Under the threat of predation, animals often group tightly together,with all group members benefiting from a reduction in predationrisk through various mechanisms, including the dilution, encounter-dilution,and predator confusion effects. Additionally, the selfish herdhypothesis was first put forward by Hamilton (1971). He proposedthat in order to reduce its risk of predation, an individualshould approach its nearest neighbor, reducing its risk at theexpense of those around it. Despite extensive empirical support,the selfish herd hypothesis has been criticized on theoreticalgrounds: approaching the nearest neighbor does not result inthe observed dense aggregations, and the nearest neighbor inspace is not necessarily the one that can be reached fastest.Increasingly complex movement rules have been proposed, successfullyproducing dense aggregations of individuals. However, no studyto date has made a full comparison of the different proposedmovement rules within the same modeling environment. Further,ecologically relevant parameters, such as the size and densityof a population or group and the time it takes a predator toattack, have thus far been ignored. Here, we investigate thereduction in risk for animals aggregating using different strategiesand demonstrate the importance of ecological parameters on riskreduction in group-living animals. We find that complex rulesare most successful at reducing risk in small, compact populations,whereas simpler rules are most successful in larger, low-densitypopulations, and when predators attack quickly after being detectedby their prey.  相似文献   

12.
    
The relationship between two commonly co-occurring filter-feeders; Bosmina longirostris and Eudiaptomus gracilis at different nutrient levels, was investigated in bag experiments in Lake Gjersjøen. At the start of the experiment, the numerical relationship between Bosmina and Eudiaptomus was less than 1 : 10, but during the experimental period, a strong increase in Bosmina and a corresponding decrease in Eudiaptomus and medium-sized algae (5–25 μm) was observed. The shift from Eudiaptomus to Bosmina was probably due to strong competition on mediumsized algae while Bosmina in addition may utilize smaller algae and bacteria, not available to Eudiaptomus. Their coexistence in the lake at much lower densities is probably due to a strong selective fish predation, suppressing Bosmina. Daphnia longispina, not naturally occurring in the lake, showed strong competitive abilities in a fish-free bag.  相似文献   

13.
    
Seasonal variation in density, thallus length and biomass, population size structure, and allometric length‐biomass relationships was investigated in populations of Sargassum ilicifolium (Turner) C. Agardh, Sargassum subrepandum (Forssk.) C. Agardh, and Turbinaria triquetra (J. Agardh) Kütz. (Phaeophyceae) on shallow reef flats in the southern Red Sea. Thallus length and biomass varied strongly with season, with the highest values occurring in the cooler months. Thallus densities showed no significant temporal variation. Log‐total biomass versus log‐density relationships were positive throughout the growth season without any decrease in the slope of the relationship. In two populations, biomass‐density combinations approached the interspecific biomass‐density line, but the massive annual shedding of modules occurred before self‐thinning would set in. Allometric length‐biomass relationships varied with season in all populations and were associated with seasonal module initiation, growth, and shedding. Evidence of a strong asymmetric competition was found in two high‐density populations. These populations showed a predominance of small thalli during peak development, asymmetrical Lorenz curves, increasing Gini coefficients, and increasing thallus length relative to biomass during the main growth phase. In two other less crowded populations, small thalli were absent during peak development, Lorenz curves were symmetrical, and Gini coefficients decreased during the main growth phase. In these populations, size equalization appears to be due to responses at the modular level rather than size‐dependent mortality. We conclude that changes in size structure in this highly seasonal environment are determined by module dynamics, modified by asymmetric competition in some populations, with a minor role of recruitment and no regulatory effect of self‐thinning.  相似文献   

14.
Synopsis Fish populations may be affected by predation and competition from various types of organisms, among which crayfish have been suggested as important actors. We here present results from stream surveys, suggesting that neither native noble, Astacus astacus, nor introduced signal crayfish, Pacifastacus leniusculus, necessarily affect fish population densities in temperate stream communities. Comparisons of fish densities within stream sites between years with absence and presence of crayfish showed no effect of either crayfish species. A further analysis of changes in fish densities between periods without and with crayfish in low, intermediate and high densities revealed that crayfish density did neither have an effect on fish densities. Our study is one of exceptionally few that consider the above aspects in long-term perspectives in natural systems, and we discuss that previously reported divergent results of crayfish effects on fish may be highly dependent on specific species and methods used, and that the effects of crayfish on fish populations deserve further attention to enable reliable predictions of community processes in streams.  相似文献   

15.
16.
    
Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic‐resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic‐producing bacteria. Thus, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics. In particular, we suggest that nutrient‐poor environments including indoor environments, for example, clean rooms and intensive care units may serve as a reservoir and source for antibiotic‐producing as well as antibiotic‐resistant bacteria.  相似文献   

17.
Interspecific competition and predation in immature Amblyseius fallacis (Garman), Amblyseius andersoni Chant, Typhlodromus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten were examined in small cages at three egg densities (0, 20 and 80) of two-spotted spider mite, Tetranychus urticae Koch, in the laboratory at 25±1°C,80% RH and 16L: 8D photoperiod. For the six possible between-species comparisons, the large polyphagous A. andersoni always outcompeted the other three predator species, which were either smaller and/or less polyphagous; the small oligophagous T. occidentalis was always eliminated by the other three predator species, which were either larger and/or more polyphagous. The small and polyphagous T. pyri tied with the large and oligophagous A. fallacis. The outcome of the interaction was generally similar at the three prey densities except in (1) the A. fallacis-A. andersoni system where the advantage of A. andersoni over A. fallacis was reduced when 20 or 80 eggs per cage were present at the start of the interaction and (2) the A. fallacis-T. occidentalis system where the advantage of A. fallacis over T. occidentalis increased with prey density. This study indicates that predator size, predator degree of polyphagy and prey density can affect the competitiveness of immature phytoseiids.  相似文献   

18.
    
Disentangling the relative contribution of predation avoidance and increased foraging efficiency in the evolution of sociality in animals has proven difficult given that the two types of benefits often operate concurrently. I identified different types of refuges from predation in birds related to morphological and ecological traits, providing an opportunity to examine concomitant changes in sociality over evolutionary times. Results of a matched-species comparative analysis indicated a reduction in the size of foraging or non-foraging groups but not complete disappearance under negligible predation risk. The results suggest that while predation avoidance is an important component in the evolution of sociality in birds, it is most probably not acting alone but rather in conjunction with other benefits such as increased foraging efficiency.  相似文献   

19.
20.
The number of mating partners an individual has within a population is a crucial parameter in sex allocation theory for simultaneous hermaphrodites because it is predicted to be one of the main parameters influencing sex allocation. However, little is known about the factors that determine the number of mates in simultaneous hermaphrodites. Furthermore, in order to understand the benefits obtained by resource allocation into the male function it is important to identify the factors that predict sperm‐transfer success, i.e. the number of sperm a donor manages to store in a mate. In this study we experimentally tested how social group size (i.e. the number of all potential mates within a population) and density affect the number of mates and sperm‐transfer success in the outcrossing hermaphroditic flatworm Macrostomum lignano. In addition, we assessed whether these parameters covary with morphological traits, such as body size, testis size and genital morphology. For this we used a method, which allows tracking sperm of a labelled donor in an unlabelled mate. We found considerable variation in the number of mates and sperm‐transfer success between individuals. The number of mates increased with social group size, and was higher in worms with larger testes, but there was no effect of density. Similarly, sperm‐transfer success was affected by social group size and testis size, but in addition this parameter was influenced by genital morphology. Our study demonstrates for the first time that the social context and the morphology of sperm donors are important predictors of the number of mates and sperm‐transfer success in a simultaneous hermaphrodite. Based on these findings, we hypothesize that sex allocation influences the mating behaviour and outcome of sperm competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号