首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When females mate multiply (polyandry) both pre‐ and post‐copulatory sexual selection can occur. Sperm competition theory predicts there should be a trade‐off between investment in attracting mates and investment in ejaculate quality. In contrast, the phenotype‐linked fertility hypothesis predicts a positive relationship should exist between investment in attracting mates and investment in ejaculate quality. Given the need to understand how pre‐ and post‐copulatory sexual selection interacts, we investigated the relationship between secondary sexual traits and ejaculate quality using the European house cricket, Acheta domesticus. Although we found no direct relationship between cricket secondary sexual signals and ejaculate quality, variation in ejaculate quality was dependent on male body weight and mating latency: the lightest males produced twice as many sperm as the heaviest males but took longer to mate with females. Our findings are consistent with current theoretical models of sperm competition. Given light males may have lower mating success than heavy males because females take longer to mate with them in no‐choice tests, light males may be exhibiting an alternative reproductive tactic by providing females with more living sperm. Together, our findings suggest that the fitness of heavy males may depend on pre‐copulatory sexual selection, while the fitness of light males may depend on post‐copulatory fertilization success.  相似文献   

2.
The context‐dependent defence (CDD) hypothesis predicts that defence levels of plant species against herbivory are not fixed but vary with environmental conditions, in a way that is specific for plant species that share evolutionary adaptations to resource conditions exemplified by similar maximum relative growth rates. More specifically, we expected plants from resource‐poor environments to display high defence levels but not when grown under resource‐rich conditions, whereas the reverse – plants from resource‐rich conditions displaying low defence levels but not when grown under resource‐poor conditions – is not necessarily the case. In this study, we used multiple‐choice bioassays in which leaf discs were fed to larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) as an efficient and effective way of indicating plant defence levels. This generalist herbivore was capable of detecting both inter‐ and intraspecific differences in defence among plant species. The CDD was tested by exploring the effects of various experimental resource conditions (light, nutrients) upon the herbivore preferences and by comparing these preferences with the maximum relative growth rate of plant species. The experimental results provide general support for the CDD hypothesis with respect to nutrient‐level variation but the effects were not related to the origin of the plant species tested. Variation in light conditions did not result in consistent effects upon herbivore preferences. The CDD therefore can be formulated more precisely as: defence levels of plant species vary under different environmental conditions but in a way that is specific for plant species that share evolutionary adaptations to similar nutrient conditions. This more precise CDD hypothesis is a useful addition to existing optimal‐defence theory because of its focus on the possible plastic effects of resource conditions upon plant defence levels. This is relevant when designing experimental plant–herbivore studies.  相似文献   

3.
It has been argued that cooperative behavior in the plant‐mycorrhizal mutualism resembles trade in a market economy and can be understood using economic tools. Here, we assess the validity of this “biological market” analogy by investigating whether a market mechanism—that is, competition between partners over the price at which they provide goods—could be the outcome of natural selection. Then, we consider the conditions under which this market mechanism is sufficient to maintain mutualistic trade. We find that: (i) as in a market, individuals are favored to divide resources among trading partners in direct relation to the relative amount of resources received, termed linear proportional discrimination; (ii) mutualistic trade is more likely to be favored when individuals are able to interact with more partners of both species, and when there is a greater relative difference between the species in their ability to directly acquire different resources; (iii) if trade is favored, then either one or both species is favored to give up acquiring one resource directly, and vice versa. We then formulate testable predictions as to how environmental changes and coevolved responses of plants and mycorrhizal fungi will influence plant fitness (crop yields) in agricultural ecosystems.  相似文献   

4.
Hosts have evolved a diverse range of defence mechanisms in response to challenge by infectious organisms (parasites and pathogens). Whether defence is through avoidance of infection, control of the growth of the parasite once infected, clearance of the infection, tolerance to the disease caused by infection or innate and/or acquired immunity, it will have important implications for the population ecology (epidemiology) of the host-parasite interaction. As a consequence, it is important to understand the evolutionary dynamics of defence in the light of the ecological feedbacks that are intrinsic to the interaction. Here, we review the theoretical models that examine how these feedbacks influence the nature and extent of the defence that will evolve. We begin by briefly comparing different evolutionary modelling approaches and discuss in detail the modern game theoretical approach (adaptive dynamics) that allows ecological feedbacks to be taken into account. Next, we discuss a number of models of host defence in detail and, in particular, make a distinction between 'resistance' and 'tolerance'. Finally, we discuss coevolutionary models and the potential use of models that include genetic and game theoretical approaches. Our aim is to review theoretical approaches that investigate the evolution of defence and to explain how the type of defence and the costs associated with its acquisition are important in determining the level of defence that evolves.  相似文献   

5.
Sexual selection theory predicts a trade‐off between premating (ornaments and armaments) and postmating (testes and ejaculates) sexual traits, assuming that growing and maintaining these traits is costly and that total reproductive investments are limited. The number of males in competition, the reproductive gains from investing in premating sexual traits, and the level of sperm competition are all predicted to influence how males allocate their finite resources to these traits. Yet, empirical examination of these predictions is currently scarce. Here, we studied relative expenditure on pre‐ and postmating sexual traits among frog species varying in their population density, operational sex ratio, and the number of competing males for each clutch of eggs. We found that the intensifying struggle to monopolize fertilizations as more and more males clasp the same female to fertilize her eggs shifts male reproductive investment toward sperm production and away from male weaponry. This shift, which is mediated by population density and the associated level of male–male competition, likely also explains the trade‐off between pre‐ and postmating sexual traits in our much broader sample of anuran species. Our results highlight the power of such a multilevel approach in resolving the evolution of traits and allocation trade‐offs.  相似文献   

6.
J. N.Holland 《Oikos》2006,113(3):563-571
Two questions central to the population ecology of mutualism include: (1) what mechanisms prevent the inherent positive feedback of mutualism from leading to unbounded population growth; and (2) what mechanisms prevent instability from arising due to overexploitation. Theory and empiricism suggest that preventing such instability requires density‐dependent processes. A recent theory proposes that if benefits and costs to a mutualist vary with the density of its partner, then instability can be prevented if the former species can control demographic rates and regulate (or limit) the population density of its partner. The ecological and evolutionary feasibility of this theory of interspecific population regulation has been demonstrated using quantitative models of mutualism between plants and pollinating seed‐consuming insects. In these models, resource‐limited fruit set and ensuing fruit abortion are mechanisms that can lead to density‐dependent recruitment and population regulation of the insects. Yet, there has been little interplay between these theoretical results and empirical research. A recent study empirically examined the density‐dependent effects of resource‐limited fruit set and fruit abortion in the Yucca/moth mutualism. An analysis of the study led to the conclusion that, even though fruit abortion can account for >95% of moth mortality, it is largely a density‐independent source of mortality that cannot regulate moth population density. Here, we re‐analyze those empirical data and conduct further theoretical analyses to examine the nature of fruit abortion on moth recruitment. We conclude that resource‐limited fruit set and fruit abortion can effectively regulate and limit moth populations, due to its density‐dependent feedback on moth recruitment. Nonetheless, in any given interaction, multiple sources of mortality may contribute to the regulation and limitation of populations, and hence the stability of mutualism, including, larval competition and mortality due to locule damage in the Yucca/moth mutualism.  相似文献   

7.
Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant–insect interactions. Although plant‐associated and herbivore‐associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third‐trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third‐trophic level symbionts act in combination with venom to affect plant‐mediated interactions by reducing colonisation of subsequent herbivore species. This ecological effect correlated with changes induced by polydnaviruses and venom in caterpillar salivary glands and in plant defence responses to herbivory. Because thousands of parasitoid species are associated with mutualistic symbiotic viruses in an intimate, specific relationship, our findings may represent a novel and widespread ecological phenomenon in plant–insect interactions.  相似文献   

8.
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade‐off possibilities. The competition‐defence hypothesis posits a trade‐off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth‐defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth‐defence trade‐off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life‐history groups and within the majority of individual sites. Thus, a growth‐defence trade‐off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.  相似文献   

9.
There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner''s investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the coevolution and population dynamics of mutualistic interactions.  相似文献   

10.
Studying how the fitness benefits of mutualism differ among a wide range of partner genotypes, and at multiple spatial scales, can shed light on the processes that maintain mutualism and structure coevolutionary interactions. Using legumes and rhizobia from three natural populations, I studied the symbiotic fitness benefits for both partners in 108 plant maternal family by rhizobium strain combinations. Genotype‐by‐genotype (G × G) interactions among local genotypes and among partner populations determined, in part, the benefits of mutualism for both partners; for example, the fitness effects of particular rhizobium strains ranged from uncooperative to mutualistic depending on the plant family. Correlations between plant and rhizobium fitness benefits suggest a trade off, and therefore a potential conflict, between the interests of the two partners. These results suggest that legume–rhizobium mutualisms are dynamic at multiple spatial scales, and that strictly additive models of mutualism benefits may ignore dynamics potentially important to both the maintenance of genetic variation and the generation of geographic patterns in coevolutionary interactions.  相似文献   

11.
We present the mathematical model for coevolution of root nodule bacteria (rhizobia) and leguminous plants which is based on the partners’ positive feedbacks resulted from their metabolic integration. The model parameters were introduced which determine: (1) coordinated changes in plant and bacterial population structures; (2) increase of fitness (reproductive potentials) in both partners as dependent on the symbiotic efficiency determined by proportion of N2-fixing rhizobia strain in root nodules. Computer experiments demonstrated that microevolution of the simulated system may follow either oscillatory or quasi-monotonous regime as dependent of frequency-dependent selection (FDS) in plant population. Negative FDS occurring in the bacterial population during competition for nodulation in combination with the positive partners’ feedback may lead to anchoring the bacterial mutations which lead either to acquisition of mutualistic traits or to changes in specificity of their expression. Anchoring of the mutualistic strains occurs most successfully in the quasi-monotonous regime and results in the improvement of genetic stability in symbiotic system.  相似文献   

12.
Theoretical models predict that investment in pre‐copulatory and post‐copulatory sexually selected traits should trade‐off. At the macroevolutionary scale, the majority of studies to date have focused on male weaponry as the target of pre‐copulatory sexual selection, but the trade‐off should equally apply to traits used to attract females, such as bird song and plumage. We studied the Old World leaf warblers (Phylloscopidae), a group of socially monogamous songbirds that experience relatively high levels of sperm competition. We examined the relationships between song duration and number of elements in the song with sperm length across 21 species, and between the same song variables and combined testes mass in a subset of these species (n = 10). Across species, these song variables and testes mass/sperm length were generally positively correlated, albeit not statistically significantly so or with borderline significance. In contrast to theory, we found no evidence for negative associations between pre‐ and post‐copulatory traits. We argue that this is a consequence of males of some species investing more into overall fertilization success (i.e. the sum of pre‐ and post‐copulatory sexual selection) than males of other species, and high fertilization success is achieved through investment into both mate attraction and sperm competition.  相似文献   

13.
Plants produce and utilize a great diversity of chemicals for a variety of physiological and ecological purposes. Many of these chemicals defend plants against herbivores, pathogens and competitors. The location of these chemicals varies within the plant, some are located entirely within plant tissues, others exist in the air‐ (or water‐) space around plants, and still others are secreted onto plant surfaces as exudates. I argue herein that the location of a given defensive chemical has profound implications for its ecological function; specifically, I focus on the characteristics of chemical defences secreted onto plant surfaces. Drawing from a broad literature encompassing ecology, evolution, taxonomy and physiology, I found that these external chemical defences (ECDs) are common and widespread in plants and algae; hundreds of examples have been detailed, yet they are not delineated as a separate class from internal chemical defences (ICDs). I propose a novel typology for ECDs and, using existing literature, explore the ecological consequences of the hypothesized unique characteristics of ECDs. The axis of total or proportional investment in ECDs versus ICDs should be considered as one axis of investment by a plant, in the same way as quantitative versus qualitative chemical defences or induced versus constitutive defences is considered. The ease of manipulating ECDs in many plant systems presents a powerful tool to help test plant defence theory (e.g. optimal defence). The framework outlined here integrates various disciplines of botany and ecology and suggests a need for further examinations of exudates in a variety of contexts, as well as recognition of the effects of within‐plant localization of defences.  相似文献   

14.
Mutualism as a constraint on invasion success for legumes and rhizobia   总被引:5,自引:0,他引:5  
Because hereditary symbiont transmission is normally absent in the mutualism of legume plants and root‐nodule bacteria (rhizobia), dispersing plants may often arrive at new habitats where mutualist partners are too rare to provide full benefits. Factors governing invasion success were explored by analysing a system of two coupled pairwise competition models: a legume invader competing with a resident non‐mutualistic plant, and a rhizobial population competing with a resident population of nonsymbiotic bacteria. The non‐linear dependence of benefits on partner abundance in this mutualism creates the possibility of two alternative population size equilibria, so that a threshold density can exist for invasion. If legumes and rhizobia exceed a critical population size, both species achieve rapid population growth, while if initial densities of both species are below their respective thresholds, they remain rare and are thus vulnerable to extinction in the presence of competitors. Overall, the results indicate that legumes may often fail at colonization attempts within habitats where mutualist partners are scarce. Data on legume prevalence in island floras and rates of geographical spread by legume weeds are consistent with this inference. Predictive insights about invasiveness may emerge from comparative research on key traits identified by the model, especially the shape of the function determining the number of nodules formed at low rhizobial density.  相似文献   

15.
Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition‐mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore‐free habitat altered the orientation of G , revealing a negative genetic covariation between defense‐ and competition‐related metabolites that is typically masked in herbivore‐exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition‐allocation trade‐offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture.  相似文献   

16.
Most studies of plant–animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human‐driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant–animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.  相似文献   

17.
Understanding species coexistence has long been a major goal of ecology. Coexistence theory for two competing species posits that intraspecific density dependence should be stronger than interspecific density dependence. Great tits and blue tits are two bird species that compete for food resources and nesting cavities. On the basis of long‐term monitoring of these two competing species at sites across Europe, combining observational and manipulative approaches, we show that the strength of density regulation is similar for both species, and that individuals have contrasting abilities to compete depending on their age. For great tits, density regulation is driven mainly by intraspecific competition. In contrast, for blue tits, interspecific competition contributes as much as intraspecific competition, consistent with asymmetric competition between the two species. In addition, including age‐specific effects of intra‐ and interspecific competition in density‐dependence models improves predictions of fluctuations in population size by up to three times.  相似文献   

18.
Sperm competition theory assumes a trade‐off between precopulatory traits that increase mating success and postcopulatory traits that increase fertilization success. Predictions for how sperm competition might affect male expenditure on these traits depend on the number of competing males, the advantage gained from expenditure on weapons, and the level of sperm competition. However, empirical tests of sperm competition theory rarely examine precopulatory male expenditure. We investigated how variation in male density affects precopulatory sexual selection on male weaponry and the level of sperm competition in the chorusing frog Crinia georgiana, where males use their arms as weapons in male–male combat. We measured body size and arm girth of 439 males, and recorded their mating success in the field. We found density‐dependent selection acting on arm girth. Arm girth was positively associated with mating success, but only at low population densities. Increased male density was associated with higher risk and intensity of sperm competition arising from multimale amplexus, and a reversal in the direction of selection on arm girth. Opposing patterns of pre‐ and postcopulatory selection may account for the negative covariation between arm girth and testes across populations of this species.  相似文献   

19.
Understanding how populations and communities respond to competition is a central concern of ecology. A seminal theoretical solution first formalised by Levins (and re‐derived in multiple fields) showed that, in theory, the form of a trade‐off should determine the outcome of competition. While this has become a central postulate in ecology it has evaded experimental verification, not least because of substantial technical obstacles. We here solve the experimental problems by employing synthetic ecology. We engineer strains of Escherichia coli with fixed resource allocations enabling accurate measurement of trade‐off shapes between bacterial survival and multiplication in multiple environments. A mathematical chemostat model predicts different, and experimentally verified, trajectories of gene frequency changes as a function of condition‐specific trade‐offs. The results support Levins' postulate and demonstrates that otherwise paradoxical alternative outcomes witnessed in subtly different conditions are predictable.  相似文献   

20.
Gerlinde B. De Deyn 《Oikos》2017,126(4):497-507
The importance of above–belowground interactions for plant growth and community dynamics became clear in the last decades, whereas the numerous studies on plant life history improved our knowledge on eco‐evolutionary dynamics. However, surprisingly few studies have linked both research fields despite their potential to increase our mechanistic understanding of how above belowground interactions are governed. Here I briefly review studies on above–belowground interactions and plant life history and identify important research gaps. To advance our understanding of ecological strategies and eco‐evolutionary dynamics of plants and their associated organisms it is warranted to elucidate the interconnectivity and tradeoffs of plant life history traits of growth, defence, reproduction, nutrient cycling and the functional composition of above‐ and belowground heterotrophic communities. Using the concept of tradeoffs in growth, reproduction and defence we can postulate that plants in rich soil grow, reproduce and die fast whilst avoiding above‐ and belowground antagonists, whereas plants in poor soil grow slow, live and reproduce longer and invest in above‐ and belowground mutualists and defences. However, alternative scenarios are possible and depend on the selection pressure by above‐ and belowground mutualists and antagonists during plant ontogeny and via after‐life effects. To elucidate missing links between life history traits and above–belowground interactions, complementary modelling and empirical studies are needed that reveal the coupling between below‐ and aboveground plant traits of growth, defence and reproduction, their heritability and their cost/benefit relation. These cost/benefit analyses of defence should span from individuals to future generations, taking feedback effects via altered biotic communities and resource competition into account. The role of soil fertility in steering plant life history traits requires explicit testing of trans‐generational trait shifts in growth, defence, reproduction, cost/benefit of associations with mutualists and antagonists and soil feedbacks across plant genotypes/species with distinct life history traits, grown across soil fertility gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号