首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales.  相似文献   

2.
Exploring the relationships between the biodiversity of groups of interacting organisms yields insight into ecosystem stability and function (Hooper et al. 2000 ; Wardle 2006 ). We demonstrated positive relationships between host plant richness and ectomycorrhizal (EM) fungal diversity both in a field study in subtropical China (Gutianshan) and in a meta‐analysis of temperate and tropical studies (Gao et al. 2013 ). However, based on re‐evaluation of our data sets, Tedersoo et al. ( 2014 ) argue that the observed positive correlation between EM fungal richness and EM plant richness at Gutianshan and also in our metastudies was based mainly from (i) a sampling design with inconsistent species pool and (ii) poor data compilation for the meta‐analysis. Accordingly, we checked our data sets and repeated the analysis performed by Tedersoo et al. ( 2014 ). In contrast to Tedersoo et al. ( 2014 ), our re‐analysis still confirms a positive effect of plant richness on EM fungal diversity in Gutianshan, temperate and tropical ecosystems, respectively.  相似文献   

3.
Patterns and regulation of mycorrhizal plant and fungal diversity   总被引:20,自引:1,他引:19  
The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of arbuscular mycorrhizal (AM) fungi in tropical deciduous forest in Mexico with 1000 plant species. AM and EM fungi are distributed according to biome, with AM fungi predominant in arid and semiarid biomes, and EM fungi predominant in mesic biomes. In addition, AM fungi tend to be more abundant in soils of low organic matter, perhaps explaining their predominance in moist tropical forest, and EM fungi generally occur in soils with higher surface organic matter.EM fungi are relatively selective of host plant species, while AM tend to be generalists. Similar morphotypes of AM fungi collected from different sites confer different physiological benefits to the same plant species. While the EM fungi have taxonomic diversity, the AM fungi must have physiological diversity for individual species to be so widespread, as supported by existing studies. The environmental adaptations of mycorrhizal fungi are often thought to be determined by their host plant, but we suggest that the physiology and genetics of the fungi themselves, along with their responses to the plant and the environment, regulates their diversity. We observed that one AM plant species,Artemisia tridentata, was associated with different fungal species across its range, indicating that the fungi can respond to the environment directly and must not do so indirectly via the host. Different species of fungi were also active during different times of the growing season on the same host, again suggesting a direct response to the environment.These patterns suggest that even within a single functional group of microorganisms, mycorrhizal fungi, considerable diversity exists. A number of researchers have expressed the concept of functional redundancy within functional groups of microorganisms, implying that the loss of a few species would not be detectable in ecosystem functioning. However, there may be high functional diversity of AM fungi within and across habitats, and high species diversity as well for EM fungi. If one species of mycorrhizal fungus becomes extinct in a habitat, field experimental data on AM fungi suggest there may be significant shifts in how plants acquire resources and grown in that habitat.  相似文献   

4.
The Fynbos biome in South Africa is renowned for its high plant diversity and the conservation of this area is particularly important for the region. This is especially true in the case of endangered vegetation types on the lowlands such as Sand Fynbos, of which only small fragments remain. The question is thus whether the diversity of the above‐ground flora is mirrored in the below‐ground microbial communities. In order to determine the relationship of the above‐ and below‐ground communities, the soil community composition of both fungal and bacterial groups in Sand Fynbos was characterized over space and time. A molecular approach was used based on the isolation of total soil genomic DNA and automated ribosomal intergenic spacer analysis of bacterial and fungal communities. Soil from four different sites was compared to resolve the microbial diversity of eubacterial and fungal groups on a local (alpha diversity) scale as well as a landscape scale (beta diversity). The community structures from different sites were compared and found to exhibit strong spatial patterns which remained stable over time. The plant community data were compared with the fungal and the bacterial communities. We concluded that the microbial communities in the Sand Fynbos are highly diverse and closely linked to the above‐ground floral communities.  相似文献   

5.
从蔓草虫豆(Atylosia scarabaeoides)、余甘子(Phyllanthus emblica)和黄花稔(Sida acuta)等5种云南元江干热河谷植物的525个组织块中,共分离得到内生真菌371株,内生真菌的分离频率在0.61~0.92之间,且所有植物叶内生真菌的分离频率都明显高于茎(P<0.05)。经形态学鉴定,内生真菌分属于拟茎点霉属(Phomopsis sp.)、离蠕孢属(Bipolaris sp.)和交链孢属(Alternaria sp.)等32个分类单元。拟茎点霉属为干热河谷植物优势内生真菌属,从所有被调查植物的茎叶中都分离得到该属真菌,且相对分离频率高达12.90%~50.54%。内生真菌群落组成的多样性和相似性分析结果表明,云南元江干热河谷植物内生真菌多样性偏低、宿主专一性较小。  相似文献   

6.
杉木人工林土壤真菌遗传多样性   总被引:10,自引:2,他引:10  
何苑皞  周国英  王圣洁  李河 《生态学报》2014,34(10):2725-2736
为探明杉木人工林土壤真菌遗传多样性及其与环境因子的关系,采用454测序技术对土壤真菌的遗传多样性进行了分析,测定了黄丰桥林场杉木人工林土壤真菌的遗传多样性与环境因子的相关性。试验结果表明:①不同代数、林龄的杉木人工林土壤理化性质及林下植被多样性均有显著差异。第1代杉木幼林林土壤肥力较高,有机质、全N、速效K的均值分别为88.02g/kg、2.56 g/kg、84.96 mg/kg均高于第2代和第3代杉木幼林林,速效N和含水量的均值分别为22.86 mg/kg和26.28%低于其他样地。杉木幼林林下植被多样性最为丰富。②通过454测序技术分析发现第1代杉木幼林真菌Ace丰富度指数、Chao丰富度指数及群落遗传多样性指数均大于第2代杉木幼林和第3代杉木幼林。杉木人工林土壤中粪壳菌纲(Sordariomycetes)真菌为优势种群。不同栽培代数杉木人工林的真菌群落存在差异,其中块菌科(Tuberaceae)为第2代和第3代杉木林特有真菌,而不同发育阶段的杉木人工林的真菌群落差异不明显。③经RDA分析,杉木人工林土壤主要真菌群落受含水量、有机质、速效P、速效K影响较大。土壤真菌群落遗传多样性Shannon-Wiener多样性指数与林下植被多样性、土壤全N显著正相关,土壤真菌Chao指数与土壤真菌Shannon-Wiener多样性指数、土壤全N含量显著正相关。本研究表明不同栽培代数杉木人工林的真菌群落存在差异,土壤真菌群落与环境因子之间具有相关性。  相似文献   

7.
Soil microbes play key roles in ecosystems, yet the impact of their diversity on plant communities is still poorly understood. Here we demonstrate that the diversity of belowground plant-associated soil fungi promotes plant productivity and plant coexistence. Using additive partitioning of biodiversity effects developed in plant biodiversity studies, we demonstrate that this positive relationship can be driven by complementarity effects among soil fungi in one soil type and by a selection effect resulting from the fungal species that stimulated plant productivity the most in another soil type. Selection and complementarity effects among fungal species contributed to improving plant productivity up to 82% and 85%, respectively, above the average of the respective fungal species monocultures depending on the soil in which they were grown. These results also indicate that belowground diversity may act as insurance for maintaining plant productivity under differing environmental conditions.  相似文献   

8.
【背景】培菌白蚁是属于白蚁科的一类与鸡枞菌属真菌共生的高等白蚁,其与体内肠道微生物和体外菌圃微生物形成三维共生体系。【目的】分析培菌白蚁菌圃和粪便的微生物多样性,并与肠道微生物进行比较。【方法】通过Illumina MiSeq高通量测序方法对培菌白蚁菌圃和粪便样品进行细菌16S rRNA基因和真菌ITS测序分析。【结果】高通量测序获得培菌白蚁菌圃和粪便样品细菌和真菌的有效序列和OTU数目。5个样品细菌OTU数目在90-199之间,而真菌OTU在10-58之间,细菌的种类多样性明显大于真菌。不论是细菌还是真菌,粪便样品的OTU数目多于菌圃样品。经物种分类分析,菌圃样品主要优势细菌是变形菌门(Proteobacteria),其相对含量超过82.4%;其次是拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes);粪便样品中优势细菌为拟杆菌门,其次是变形菌门,粪便优势菌属为别样杆菌属和营发酵单胞菌属,这与培菌白蚁肠道菌多样性组成一致。培菌白蚁菌圃和粪便样品共生真菌主要为担子菌门(Basidiomycota)和子囊菌门(Ascomycota)。菌圃优势真菌为鸡枞菌属(Termi...  相似文献   

9.
Exploring the link between above‐ and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well‐recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field‐based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant‐associated effects on soil fungal communities are largely guild‐specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.  相似文献   

10.
Biodiversity decline is a major concern for ecosystem functioning. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in both natural and artificial ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal species richness on soil invasion by non resident microbes. Synthetic fungal communities with a species diversity ranging from 1 to 8 were assembled in laboratory microcosms and used in three factorial experiments to assess the effect of diversity on soil fungistasis, microbial invasion of soil amended with plant litter and of plant rhizosphere. The capability of different microbes to colonize environments characterized by different resident microbial communities was measured. The number of microbial species in the microcosms positively affected soil fungistasis that was also induced more rapidly in presence of synthetic communities with more species. Moreover, the increase of resident fungal diversity dramatically reduced the invasibility of both soil and plant rhizosphere. We found lower variability of soil fungistasis and invasibility in microcosms with higher species richness of microbial communities. Our study pointed out the existence of negative relationships between fungal diversity and soil invasibility by non resident microbes. Therefore, the loss of microbial species may adversely affect ecosystem functionality under specific environmental conditions.  相似文献   

11.
土壤真菌多样性及分子生态学研究进展   总被引:20,自引:0,他引:20  
真菌是土壤中一类重要的微生物,参与有机质分解,与植物共生为植物提供养分,同时病原真菌也会引起粮食产量的降低.土壤真菌多样性在维持生态系统的平衡和为人类提供大量未开发资源上起到了独特而重要的作用.本文从物种多样性、生境多样性、功能多样性角度阐述了土壤真菌多样性,并从农田、林地、草地、极端环境与一些复杂环境土壤真菌多样性层面综述了土壤真菌多样性分子生态学研究进展。同时论述了一些影响真菌多样性的因素,并对土壤真菌多样性研究的前景提出展望.  相似文献   

12.
Factors related to diversity of decomposer fungi in tropical forests   总被引:8,自引:0,他引:8  
Recent studies suggest that host-preferences are common among certain groups of tropical fungal decomposers but rare in others, and sometimes occur where we least expect them. Host preferences among microfungi and ascomycetes that decompose leaf litter are common but usually involve differences in relative frequencies more than presence/absence, so their diversity may be loosely correlated with species richness of host trees. Strong host-specificity appears to be rare among wood decomposer fungi, whereas characteristics of their substrata and habitat are very important for this group. Anthropogenic disturbance predisposed a tropical forest to subsequent hurricane damage, and the resulting direct and indirect effects on host diversity and habitat heterogeneity were reflected in the decomposer fungal community more than sixty years after the original disturbance. While species richness of dictyostelid slime molds and functional diversity of their bacterial prey increased with disturbance, the more diverse microfungi and ascomycetes were apparently negatively affected by disturbance.  相似文献   

13.
One robust result from many small-scale experiments has been that plant community productivity often increases with increasing plant diversity. Most frequently, resource-based or competitive interactions are thought to drive this positive diversity-productivity relationship. Here, we ask whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity-productivity relationship. We created plant assemblages that varied in diversity and crossed this with a ± soil fungicide treatment. In control (non-fungicide treated) assemblages there was a strong positive relationship between plant diversity and above-ground plant biomass. However, in fungicide-treated assemblages this relationship disappeared. This occurred because fungicide increased plant production by an average of 141% at the lower ends of diversity but boosted production by an average of only 33% at the higher ends of diversity, essentially flattening the diversity-productivity curve. These results suggest that soil pathogens might be a heretofore unappreciated driver of diversity-productivity relationships.  相似文献   

14.
The arbuscular mycorrhizal (AM) symbiosis is a key plant–microbe interaction in sustainable functioning ecosystems. Increasing anthropogenic disturbance poses a threat to AM fungal communities worldwide, but there is little empirical evidence about its potential negative consequences. In this global study, we sequenced AM fungal DNA in soil samples collected from pairs of natural (undisturbed) and anthropogenic (disturbed) plots in two ecosystem types (10 naturally wooded and six naturally unwooded ecosystems). We found that ecosystem type had stronger directional effects than anthropogenic disturbance on AM fungal alpha and beta diversity. However, disturbance increased alpha and beta diversity at sites where natural diversity was low and decreased diversity at sites where natural diversity was high. Cultured AM fungal taxa were more prevalent in anthropogenic than natural plots, probably due to their efficient colonization strategies and ability to recover from disturbance. We conclude that anthropogenic disturbance does not have a consistent directional effect on AM fungal diversity; rather, disturbance equalizes levels of diversity at large scales and causes changes in community functional structure.  相似文献   

15.
Tropical rainforests have been thought to have low prevalence and diversity of ectomycorrhizal symbioses. However, to date, tropical regions have been poorly sampled for ectomycorrhizal fungi. Here, we investigated ectomycorrhizal fungal community diversity and the role of host plants in shaping this diversity in three main ultramafic rainforests in New Caledonia, an archipelago renowned for its exceptional plant diversity and recognized as a biodiversity hotspot. Sampling of ectomycorrhizal root tips and fruit bodies in Nothofagus aequilateralis-dominated, Arillastrum gummiferum-dominated and mixed rainforests showed high fungal diversity with, in total, 28 lineages and 311 operational taxonomic units (OTUs), of which 95% might be endemic. We also found that host preference and host density influenced ectomycorrhizal community composition and contributed to the high fungal diversity of New Caledonian rainforests. Finally, the /cortinarius lineage dominated the below- and above-ground communities, which suggests that this lineage plays a central role in ultramafic ecosystems functioning.  相似文献   

16.
盐生植物种类及其所具有的不同耐盐调节方式影响着根际微生物群落的结构与组成。为明确不同类型盐生植物根际与非根际土壤中真菌群落结构与组成的差异及其与土壤环境间的相互关系,该研究采集了黄河三角洲地区芦苇、盐地碱蓬、獐毛3种不同类型盐生植物0~20 cm土层的根际和非根际土壤,通过高通量测序对其真菌群落多样性和结构进行了分析,以探究真菌群落特征与土壤理化因子间的关系。结果表明:(1)3种不同类型盐生植物根际土壤真菌群落丰富度显著大于各自非根际土,且獐毛根际土壤真菌群落丰富度显著大于芦苇和盐地碱蓬的根际土。(2)距离热图分析表明,芦苇和盐地碱蓬非根际土壤真菌群落间的相似性最大。(3)土壤真菌多样性和丰富度与土壤总碳、总氮、有效磷、pH呈正相关关系,与土壤盐分含量呈负相关关系。(4)3种不同类型盐生植物的根际与非根际土壤中,球囊菌门(Glomeromycota)均为绝对优势门,盾巨孢囊霉属(Scutellospora)为优势属。(5)RDA分析表明,土壤盐分含量是影响土壤真菌群落结构的重要因子,球囊菌门丰度与土壤总氮、总碳、有效磷、有机碳、pH呈正相关关系,与盐分呈负相关关系。(6)植物土壤真菌群...  相似文献   

17.
AM真菌物种多样性:生态功能、影响因素及维持机制   总被引:1,自引:0,他引:1  
杨海水  熊艳琴  王琪  郭伊  戴亚军  许明敏 《生态学报》2016,36(10):2826-2832
AM真菌物种多样性是土壤生态系统生物多样性的重要组分之一。尽管对AM真菌多样性已有多年研究,但是,已有研究绝大多数仅停留在对AM真菌群落种属解析层面上,对AM真菌物种多样性生态功能及维持机制方面的认识较浅。从生态功能、影响因素及维持机制3个方面系统地综述了近年来AM真菌多样性领域的研究进展。认为AM真菌多样性对植物群落生产力的调控机制及结合理论与实践解析AM真菌多样性维持机制是该领域未来的重点研究方向。  相似文献   

18.
Soil microbes are known to be key drivers of several essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this time frame plants with a monoculture or mixture history changed in the bacterial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same field monocultures or mixtures (plant history in monoculture vs. mixture) in pots inoculated with microbes extracted from the field monoculture and mixture soils attached to the roots of the host plants (soil legacy). After 5 months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Bacterial community structure in the plant rhizosphere was primarily determined by soil legacy and by plant species identity, but not by plant history. In seven of the eight plant species the number of individual operational taxonomic units with increased abundance was larger when inoculated with microbes from mixture soil. We conclude that plant species richness can affect below‐ground community composition and diversity, feeding back to the assemblage of rhizosphere bacterial communities in newly establishing plants via the legacy in soil.  相似文献   

19.
Sediment samples were collected from 12 beaches affected by the 2004 Asian Tsunami in the south-east coast of India between Vanagiri and Nagoor. The objective of the present study is to delineate the microbial diversity in pre- and post-tsunami disaster coastal sediments. The collected marine sediments indicate that the overall microbial diversity is higher in the pre-tsunami sediments. The increase in pathogenic bacteria and fungal species after the tsunami is obscured due to inundation and backwashing of seawater along the coast. The reduction of other microbial diversity after the tsunami is attributed that the coastal and shelf sediments play an important role in the demineralization of organic matter, which supports the growth of microbes. The continuous exchange of ocean water and backwashing of coastal sediments by the tsunami wave probably reduced the pathogenic bacterial diversity in the sediments.  相似文献   

20.
神农架国家公园林线过渡带土壤真菌多样性   总被引:1,自引:0,他引:1  
盛玉钰  丛静  卢慧  杨开华  杨林森  王敏  张于光 《生态学报》2018,38(15):5322-5330
林线过渡带是陆地生态系统对气候变化响应的敏感区域,研究林线过渡带土壤真菌的群落结构和形成机制,对于预测气候变化对土壤养分循环和维持陆地生态系统功能的影响具有重要意义。利用Illumina高通量测序技术分析了神农架国家公园林线上下的灌木林和针叶林的土壤真菌群落结构和多样性。结果表明,在真菌物种组成上,两种植被类型的土壤优势菌门、属和种类不同,针叶林和灌木林的优势菌门分别是担子菌门(Basidiomycota)和接合菌门(Zygomycota)。除趋势对应分析(DCA)和不相似性检验(Dissimilarity test)表明两种林型的土壤真菌群落结构组成存在显著差异,且针叶林土壤真菌Shannon指数、Chao值和Richness指数均显著(P0.05)高于灌木林。典范对应分析(CCA)和Mantel检验显示土壤真菌群落结构与土壤p H、植物多样性、土壤温度和土壤湿度存在显著相关性。因此,林线过渡带上下的土壤真菌群落结构和多样性存在显著差异,土壤p H、植物多样性、土壤湿度和土壤温度可能是影响土壤真菌群落结构的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号