首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Multiscale computational modeling of drug delivery systems (DDS) is poised to provide predictive capabilities for the rational design of targeted drug delivery systems, including multi-functional nanoparticles. Realistic, mechanistic models can provide a framework for understanding the fundamental physico-chemical interactions between drug, delivery system, and patient. Multiscale computational modeling, however, is in its infancy even for conventional drug delivery. The wide range of emerging nanotechnology systems for targeted delivery further increases the need for reliable in silico predictions. This review will present existing computational approaches at different scales in the design of traditional oral drug delivery systems. Subsequently, a multiscale framework for integrating continuum, stochastic, and computational chemistry models will be proposed and a case study will be presented for conventional DDS. The extension of this framework to emerging nanotechnology delivery systems will be discussed along with future directions. While oral delivery is the focus of the review, the outlined computational approaches can be applied to other drug delivery systems as well.  相似文献   

4.
The recent increase in high‐throughput capacity of ‘omics datasets combined with advances and interest in machine learning (ML) have created great opportunities for systems metabolic engineering. In this regard, data‐driven modeling methods have become increasingly valuable to metabolic strain design. In this review, the nature of ‘omics is discussed and a broad introduction to the ML algorithms combining these datasets into predictive models of metabolism and metabolic rewiring is provided. Next, this review highlights recent work in the literature that utilizes such data‐driven methods to inform various metabolic engineering efforts for different classes of application including product maximization, understanding and profiling phenotypes, de novo metabolic pathway design, and creation of robust system‐scale models for biotechnology. Overall, this review aims to highlight the potential and promise of using ML algorithms with metabolic engineering and systems biology related datasets.  相似文献   

5.
Biological invasions reshape environments and affect the ecological and economic welfare of states and communities. Such invasions advance on multiple spatial scales, complicating their control. When modeling stochastic dispersal processes, intractable likelihoods and autocorrelated data complicate parameter estimation. As with other approaches, the recent synthetic likelihood framework for stochastic models uses summary statistics to reduce this complexity; however, it additionally provides usable likelihoods, facilitating the use of existing likelihood‐based machinery. Here, we extend this framework to parameterize multi‐scale spatio‐temporal dispersal models and compare existing and newly developed spatial summary statistics to characterize dispersal patterns. We provide general methods to evaluate potential summary statistics and present a fitting procedure that accurately estimates dispersal parameters on simulated data. Finally, we apply our methods to quantify the short and long range dispersal of Chagas disease vectors in urban Arequipa, Peru, and assess the feasibility of a purely reactive strategy to contain the invasion.  相似文献   

6.
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.  相似文献   

7.
In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally.  相似文献   

8.
自然生态系统与人类感知的交互作用是景感生态学关注的焦点,与生态系统服务的供需紧密关联。生态系统、生态过程、生态系统服务以及人的需求均具有一定的时空尺度特征,因此,由这些过程产生的"景感"也具有时空尺度特征,并依赖于这个过程的尺度特征相互作用。梳理生态系统服务供需关系与景感营造规划的尺度特征,探索二者相互联系,进而提出基于景感生态学理论,通过景感营造实现生态系统服务供需平衡的多尺度实现路径。从空间维度,体现从"社区-城市-流域-区域"的多尺度景感规划框架,从应用维度,体现从生态系统服务需求探索-关键指标体系识别-多源谜码数据感知-景感营造与规划设计的具体流程。通过多尺度的联合景感营造,调整自然供给水平与人类不同尺度的生态系统服务需求以期达到平衡,从而实现人类生存环境福利与居民福祉提升的目标。在此基础上,结合雄安新区规划建设实例,从多尺度景感营造的角度为城市绿色生态建设与可持续发展提出优化建议。主要结论:(1)基于"社区-城市-流域-区域"的多尺度景感分析框架,将景感要素与生态系统服务供需思想融入城市规划,在不同尺度上趋善优化,对于实现可持续发展城市规划和管理具有重要指示意义;(2)雄安新区规划设计需更系统和细致地考虑人类感知需求,通过多尺度景感营造设计,共同实现雄安新区的可持续发展与人居环境提升。其中,在社区尺度,需重点关注社区植被配置和居民的休闲游憩;在新区尺度重点关注绿地系统网络构建;在大清河流域尺度重点关注河流健康与水文调节;在京津冀区域尺度需注重山体通风廊道与生态屏障的构建与优化。  相似文献   

9.
Modeling and simulation: tools for metabolic engineering.   总被引:7,自引:0,他引:7  
Mathematical modeling is one of the key methodologies of metabolic engineering. Based on a given metabolic model different computational tools for the simulation, data evaluation, systems analysis, prediction, design and optimization of metabolic systems have been developed. The currently used metabolic modeling approaches can be subdivided into structural models, stoichiometric models, carbon flux models, stationary and nonstationary mechanistic models and models with gene regulation. However, the power of a model strongly depends on its basic modeling assumptions, the simplifications made and the data sources used. Model validation turns out to be particularly difficult for metabolic systems. The different modeling approaches are critically reviewed with respect to their potential and benefits for the metabolic engineering cycle. Several tools that have emerged from the different modeling approaches including structural pathway synthesis, stoichiometric pathway analysis, metabolic flux analysis, metabolic control analysis, optimization of regulatory architectures and the evaluation of rapid sampling experiments are discussed.  相似文献   

10.
Immune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models. Cell population dynamics are described by an agent-based model and systemic cytokine concentrations by ordinary differential equations. A Monte Carlo simulation algorithm allows information to flow efficiently between the four modules by separating the time scales. Such modularity improves computational performance and versatility and facilitates data integration. We validated our technology by reproducing known experimental results, including differentiation patterns of CD4+ T cells triggered by different combinations of cytokines, metabolic regulation by IL2 in these cells, and their response to influenza infection. In doing so, we added multi-scale insights to single-scale studies and demonstrated its predictive power by discovering switch-like and oscillatory behaviors of CD4+ T cells that arise from nonlinear dynamics interwoven across three scales. We identified the inflamed lymph node’s ability to retain naive CD4+ T cells as a key mechanism in generating these emergent behaviors. We envision our model and the generic framework encompassing it to serve as a tool for understanding cellular and molecular immunological problems through the lens of systems immunology.  相似文献   

11.
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches – based on the data collected with high throughput technologies – to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.  相似文献   

12.
A key strength of computational modeling is that it can provide estimates of muscle, ligament, and joint loads, stresses, and strains through non-invasive means. However, simulations that can predict the forces in the muscles during activity while maintaining sufficient complexity to realistically represent the muscles and joint structures can be computationally challenging. For this reason, the current state of the art is to apply separate rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or more disconnected models often fails to capture key interactions between the joint-level and whole-body scales. Single framework MSFE models have the potential to overcome the limitations associated with disconnected models in series. The objectives of the current study were to create a multi-scale FE model of the human lower extremity that combines optimization, dynamic muscle modeling, and structural FE analysis in a single framework and to apply this framework to evaluate the mechanics of healthy knee specimens during two activities. Two subject-specific FE models (Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including detailed representations of the muscles. Muscle forces, knee joint loading, and articular contact were calculated for two activities using an inverse dynamics approach and static optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric patient data. This study demonstrates the feasibility of detailed quasi-static, muscle-driven simulations in an FE framework.  相似文献   

13.
Conservation planning with insects at three different spatial scales   总被引:1,自引:0,他引:1  
Deciding which areas to protect, and where to manage and how, are no easy tasks. Many protected areas were established opportunistically under strong political and economic constraints, which may have resulted in inefficient and ineffective conservation. Systematic conservation planning has helped us move from ad-hoc decisions to a quantitative and transparent decision-making process, identifying conservation priorities that achieve explicit objectives in a cost-efficient manner. Here we use Finnish butterflies to illustrate different modeling approaches to address three different types of situations in conservation planning at three different spatial scales. First, we employ species distribution models at the national scale to construct a conservation priority map for 91 species at the resolution of 10×10  km. Species distribution models interpolate sparse occurrence data to infer variation in habitat suitability and to predict species responses to habitat loss, management actions and climate change. Second, at the regional scale we select the optimal management plan to protect a set of habitat specialist species. And third, at the landscape scale, we use a metapopulation approach to manage a network of habitat patches for long-term persistence of a single butterfly species. These different modeling approaches illustrate trade-offs between complexity and tractability and between generality and precision. General correlation-based models are helpful to set priorities for multiple species at large spatial scales. More specific management questions at smaller scales require further data and more complex models. The vast numbers of insect species with diverse ecologies provide a source of information that has remained little used in systematic conservation planning.  相似文献   

14.
Citizen science and community-based monitoring programs are increasing in number and breadth, generating volumes of scientific data. Many programs are ill-equipped to effectively manage these data. We examined the art and science of multi-scale citizen science support, focusing on issues of integration and flexibility that arise for data management when programs span multiple spatial, temporal, and social scales across many domains. Our objectives were to: (1) briefly review existing citizen science approaches and data management needs; (2) propose a framework for multi-scale citizen science support; (3) develop a cyber-infrastructure to support citizen science program needs; and (4) describe lessons learned. We find that approaches differ in scope, scale, and activities and that the proposed framework situates programs while guiding cyber-infrastructure system development. We built a cyber-infrastructure support system for citizen science programs (www.citsci.org) and show that carefully designed systems can be adept enough to support programs at multiple spatial and temporal scales across many domains when built with a flexible architecture. The advantage of a flexible, yet controlled, cyber-infrastructure system lies in the ability of users with different levels of permission to easily customize the features themselves, while adhering to controlled vocabularies necessary for cross-discipline comparisons and meta-analyses. Program evaluation tied to this framework and integrated into cyber-infrastructure support systems will improve our ability to track effectiveness. We compare existing systems and discuss the importance of standards for interoperability and the challenges associated with system maintenance and long-term support. We conclude by offering a vision of the future of citizen science data management and cyber-infrastructure support.  相似文献   

15.
Soil organic matter (SOM) is an indicator of sustainable land management as stated in the global indicator framework of the United Nations Sustainable Development Goals (SDG Indicator 15.3.1). Improved forecasting of future changes in SOM is needed to support the development of more sustainable land management under a changing climate. Current models fail to reproduce historical trends in SOM both within and during transition between ecosystems. More realistic spatio‐temporal SOM dynamics require inclusion of the recent paradigm shift from SOM recalcitrance as an ‘intrinsic property’ to SOM persistence as an ‘ecosystem interaction’. We present a soil profile, or pedon‐explicit, ecosystem‐scale framework for data and models of SOM distribution and dynamics which can better represent land use transitions. Ecosystem‐scale drivers are integrated with pedon‐scale processes in two zones of influence. In the upper vegetation zone, SOM is affected primarily by plant inputs (above‐ and belowground), climate, microbial activity and physical aggregation and is prone to destabilization. In the lower mineral matrix zone, SOM inputs from the vegetation zone are controlled primarily by mineral phase and chemical interactions, resulting in more favourable conditions for SOM persistence. Vegetation zone boundary conditions vary spatially at landscape scales (vegetation cover) and temporally at decadal scales (climate). Mineral matrix zone boundary conditions vary spatially at landscape scales (geology, topography) but change only slowly. The thicknesses of the two zones and their transport connectivity are dynamic and affected by plant cover, land use practices, climate and feedbacks from current SOM stock in each layer. Using this framework, we identify several areas where greater knowledge is needed to advance the emerging paradigm of SOM dynamics—improved representation of plant‐derived carbon inputs, contributions of soil biota to SOM storage and effect of dynamic soil structure on SOM storage—and how this can be combined with robust and efficient soil monitoring.  相似文献   

16.
生态系统服务建模技术研究进展   总被引:5,自引:4,他引:1  
李婷  吕一河 《生态学报》2018,38(15):5287-5296
在生态系统服务评估模型的数量、类型及应用大量增加的背景下,为将生态系统服务评估有效整合到决策中,系统比较、甄别不同建模工具并筛选出适合决策需求的生态系统服务评估和模拟方法尤为必要。因此,归纳并总结了国内外现有的生态系统服务评估模型的建模技术,包括:相关关系法、生物-物理过程法以及专家知识法;分别对其原理、差异、优缺点以及适用性进行了详尽阐释。大多数相关模型侧重于统计关系,相对容易创建和扩展,适用于生态系统服务的初始评估;生物-物理过程模型难以构建且不易获取,但提供了探索人-地系统相互作用和长期变化的有效机制;专家知识法有效结合了多种类型的知识体系,关注人类社会与自然系统之间反馈和交互动态的系统整合,但当评估地点发生变化时难以验证。在此基础上,介绍了基于上述3种建模技术的典型生态系统服务综合评估模型的发展和应用现状。各类建模技术面临着实用性和科学准确性之间的权衡。通过对不同建模技术的梳理与整合分析旨在提升当前生态系统服务研究的决策支撑能力,并为国内相关研究提供参考和借鉴。  相似文献   

17.
雄安新区多尺度生态基础设施规划   总被引:1,自引:0,他引:1  
杨萌  廖振珍  石龙宇 《生态学报》2020,40(20):7123-7131
生态基础设施是保持、改善和增加生态系统服务的条件和过程,对于提升区域生态系统服务能力具有重要意义。已有的生态基础设施规划方法主要针对单一尺度进行,不能体现生态系统服务在不同尺度间的相互影响。基于ArcGIS、最小累积阻力(MCR)模型和层次分析法(AHP)构建了一种"宏观-中观-微观"多尺度生态基础设施核心区识别和生态廊道辨识的方法体系框架。以雄安新区为例,提出生态基础设施规划方案:宏观尺度需维持气候调节、固碳释氧、保护生物多样性、防风固沙等功能的稳定,生态核心区斑块面积建议大于10 km2,生态廊道宽度设置为100-200 m;中观尺度生态核心区斑块面积不小于5 km2,宽度设置为50-100 m,可改善区域水源涵养、文化休闲、净化环境、减弱噪声等生态系统服务功能;微观尺度生态核心区斑块需大于1 km2,宽度为10-30 m,可有效控制径流、净水调蓄。得出以下结论:(1)不同尺度生态基础设施规划目标不同,规模有所差别,其中宏观尺度规模最大,微观最小;(2)多尺度规划方法,可以科学有效的指导生态基础设施建设,提高区域生态系统服务能力;(3)多尺度生态基础设施规划建设需要向多学科理论和方法的交叉融合方向发展。研究结论可为今后全面推进雄安新区的可持续发展提供科学基础和决策参考。  相似文献   

18.
The potential for modern biology to identify new sources for genetical, chemical and biological control of plant disease is remarkably high. Successful implementation of these methods within globally and locally changing agricultural environments demands new approaches to durable control. This, in turn, requires fusion of population genetics and epidemiology at a range of scales from the field to the landscape and even to continental deployment of control measures. It also requires an understanding of economic and social constraints that influence the deployment of control. Here I propose an epidemiological framework to model invasion, persistence and variability of epidemics that encompasses a wide range of scales and topologies through which disease spreads. By considering how to map control methods onto epidemiological parameters and variables, some new approaches towards optimizing the efficiency of control at the landscape scale are introduced. Epidemiological strategies to minimize the risks of failure of chemical and genetical control are presented and some consequences of heterogeneous selection pressures in time and space on the persistence and evolutionary changes of the pathogen population are discussed. Finally, some approaches towards embedding epidemiological models for the deployment of control in an economically plausible framework are presented.  相似文献   

19.
Understanding spatiotemporal population trends and their drivers is a key aim in population ecology. We further need to be able to predict how the dynamics and sizes of populations are affected in the long term by changing landscapes and climate. However, predictions of future population trends are sensitive to a range of modeling assumptions. Deadwood‐dependent fungi are an excellent system for testing the performance of different predictive models of sessile species as these species have different rarity and spatial population dynamics, the populations are structured at different spatial scales, and they utilize distinct substrates. We tested how the projected large‐scale occupancies of species with differing landscape‐scale occupancies are affected over the coming century by different modeling assumptions. We compared projections based on occupancy models against colonization–extinction models, conducting the modeling at alternative spatial scales and using fine‐ or coarse‐resolution deadwood data. We also tested effects of key explanatory variables on species occurrence and colonization–extinction dynamics. The hierarchical Bayesian models applied were fitted to an extensive repeated survey of deadwood and fungi at 174 patches. We projected higher occurrence probabilities and more positive trends using the occupancy models compared to the colonization–extinction models, with greater difference for the species with lower occupancy, colonization rate, and colonization:extinction ratio than for the species with higher estimates of these statistics. The magnitude of future increase in occupancy depended strongly on the spatial modeling scale and resource resolution. We encourage using colonization–extinction models over occupancy models, modeling the process at the finest resource‐unit resolution that is utilizable by the species, and conducting projections for the same spatial scale and resource resolution at which the model fitting is conducted. Further, the models applied should include key variables driving the metapopulation dynamics, such as the availability of suitable resource units, habitat quality, and spatial connectivity.  相似文献   

20.
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号