首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components.  相似文献   

2.
Combining genetic variation and phenotypic plasticity in tradeoff modelling   总被引:4,自引:0,他引:4  
Tradeoffs lead to antagonistic relationships between phenotypic traits and are thought to be determined both genetically and environmentally. We present here an allocation model that distinguishes between the genetic and environmental components of variation in resource allocation. In this model we introduced plasticity of resource allocation which was considered to be an adaptive response to environmental variations. The results show that resource allocation plasticity is a key parameter for the existence of environmental (i.e. inter environments and intra genotype) correlations and is therefore necessary to detect environment-induced tradeoffs. We also investigated the impact of the resource allocation plasticity and other factors on genetic (i.e. inter genotypes) correlations. Our results show that resource allocation plasticity induces a masking effect of tradeoffs when studying genetic correlations and increases the masking effect of resource variation by making apparent correlations positive when negative correlations are expected. In addition, by simulating different sources of resource acquisition variation, we demonstrated that resource variation might have different effects on correlations according to the experimental design and the studied biological material. Further development of this model may be used to investigate the theoretical implications of tradeoffs in evolutionary biology and to improve design and interpretation of experimental studies.  相似文献   

3.
Incomplete information regarding both selection regimes and the genetic basis of fitness limits our understanding of adaptive evolution. Among‐year variation in the genetic basis of fitness is rarely quantified, and estimates of selection are typically based on single components of fitness, thus potentially missing conflicting selection acting during other life‐history stages. Here, we examined among‐year variation in selection on a key life‐history trait and the genetic basis of fitness covering the whole life cycle in the annual plant Arabidopsis thaliana. We planted freshly matured seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified selection against the nonlocal Italian genotype, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on timing of germination during different life stages. In all 3 years, the local Swedish genotype outperformed the nonlocal Italian genotype. However, both the contribution of early life stages to relative fitness, and the effects of fitness QTL varied among years. Timing of germination was under conflicting selection through seedling establishment vs. adult survival and fecundity, and both the direction and magnitude of net selection varied among years. Our results demonstrate that selection during early life stages and the genetic basis of fitness can vary markedly among years, emphasizing the need for multiyear studies considering the whole life cycle for a full understanding of natural selection and mechanisms maintaining local adaptation.  相似文献   

4.
Both plasticity and genetic differentiation can contribute to phenotypic differences between populations. Using data on non‐fitness traits from reciprocal transplant studies, we show that approximately 60% of traits exhibit co‐gradient variation whereby genetic differences and plasticity‐induced differences between populations are the same sign. In these cases, plasticity is about twice as important as genetic differentiation in explaining phenotypic divergence. In contrast to fitness traits, the amount of genotype by environment interaction is small. Of the 40% of traits that exhibit counter‐gradient variation the majority seem to be hyperplastic whereby non‐native individuals express phenotypes that exceed those of native individuals. In about 20% of cases plasticity causes non‐native phenotypes to diverge from the native phenotype to a greater extent than if plasticity was absent, consistent with maladaptive plasticity. The degree to which genetic differentiation versus plasticity can explain phenotypic divergence varies a lot between species, but our proxies for motility and migration explain little of this variation.  相似文献   

5.
Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro‐evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade‐off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life‐history traits under study. Invasive C. diffusa populations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade‐off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances of C. diffusa may have expanded in the invaded range. This observation could be due to selection for plastic, “general‐purpose” genotypes with broad environmental tolerances.  相似文献   

6.
Phenotypic plasticity may be critical for nutrient-limited organisms that allocate ingested nutrients to the competing demands of reproduction and survivorship. Leafhoppers that feed on xylem fluid allow assessment of plasticity in response to the constant selective pressure of nutritional inadequacy. We examined feeding behavior (host selection and consumption rates) and nutrient allocation (fecundity, change in body mass and composition) of the xylem fluid-feeding leafhopper Homalodisca vitripennis (Hemiptera:Cicadellidae) on ten genotypes of related Prunus germplasm when adults first seasonally appear, and later during population peaks, to examine the effects of genotypes and season on plasticity of life history and behavioral traits. Behavior and resource allocation to life history traits were both mediated by xylem nutrients, although nutrients impacting behavior differed from those mediating life history. Host selection and consumption varied with genotype between June and July, yet behavior consistently reflected concentrations of dietary glutamine. Resource allocations also increased linearly with nutrient concentrations, but were best correlated to ingested essential amino acids rather than glutamine. Body mass and composition were highly correlated to dietary essential amino acids in June; 6?weeks later, fecundity was instead proportional to essential amino acids. The discrepancy in nutrients which impact behavior versus those mediating life history may explain the weak preference?Cperformance linkage documented for many insects. The demarcation in allocating resources to biomass in June to fecundity in July suggests increased allocation to reproduction during periods of nutrient stress as predicted by the theory of optimal resource allocation; other contributing biotic and abiotic factors are also discussed.  相似文献   

7.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.  相似文献   

8.
Summary Using a two-loci multiplicative model of resource allocation, we show how the existence of several levels of resource allocation may affect the sign of the genetic correlations between traits linked by trade-offs. Positive genetic correlations between components of fitness affected by genetic trade-offs may result from different amounts of genetic variability at the pleiotropic loci determining the allocation of resources. Thus positive genetic correlations may be obtained in the absence both of environmental variation and of differences between individuals in resource acquisition. Nevertheless, positive correlations between all components of fitness at the same time cannot be obtained without variability in the acquisition of resources.  相似文献   

9.
Tradeoffs – negative reciprocal causal relationships in net benefits between trait magnitudes – have not always been studied in depth appropriate to their central role in life‐history analysis. Here we focus on allocation tradeoffs, in which acquisition of a limiting resource requires allocation of resource to alternative traits. We identify the components of this allocation process and emphasize the importance of quantifying them. We then propose categorizing allocation tradeoffs into linear, concave and convex relationships based on the way that resource allocation yields trait magnitudes under the tradeoff. Linear relationships are over‐represented in the literature because of typically small data sets over restricted ranges of trait magnitudes, an emphasis on simple correlation analysis, and a failure to remove variation associated with acquisition of the limiting resource in characterizing the tradeoff. (We provide methods for controlling these acquisition effects.) Non‐linear relationships have been documented and are expected under plausible conditions that we summarize. We note ways that shifting environments and biological features yield plasticity of tradeoff graphs. Finally, we illustrate these points using case studies and close with priorities for future work.  相似文献   

10.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

11.
A central tenet of evolutionary biology states that life‐history traits are linked via trade‐offs, as classically exemplified by the van Noordwijk and de Jong model. This model, however, assumes that the relative resource allocation to a biological function varies independently of the total resource acquisition. Based on current empirical evidence, we first explored the dependency between the total resource acquisition and the relative resource allocation to reproduction and showed that such dependency is the rule rather than the exception. We then derived the expression of the covariance between traits when the assumption of independence is relaxed and used simulations to quantify the importance of such dependency on the detection of trade‐offs between current reproduction and future survival. We found that the dependency between the total energy acquisition and the relative allocation to reproduction can influence the probability to detect trade‐offs between survival and reproduction. As a general rule, a negative dependency between the total energy acquisition and the relative allocation to reproduction should lead to a higher probability of detecting a trade‐off in species with a fast pace of life, whereas a positive dependency should lead to a higher probability of detecting a trade‐off in species with a slow pace of life. In addition to confirming the importance of resource variation to reveal trade‐offs, our finding demonstrates that the covariance between resource allocation and resource acquisition is generally not null and also plays a fundamental role in the detection of trade‐offs.  相似文献   

12.
Plant strategy and life‐history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life‐history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life‐history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.  相似文献   

13.
Models for sex allocation assume that increased expenditure of resources on male function decreases the resources available for female function. Under some circumstances, a negative genetic correlation between investment in stamens and investment in ovules or seeds is expected. Moreover, if fitness returns for investment in male and female function are different with respect to size, sex allocation theory predicts size‐specific gender changes. We studied sex allocation and genetic variation for investment in stamens, ovules and seeds at both the flower and the plant level in a Dutch population of the wind‐pollinated and predominantly outcrossing Plantago coronopus. Data on biomass of floral structures, stamens, ovules, seedset and seedweight were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and (genetic) correlations were estimated from the greenhouse‐grown progeny of maternal families, raised at two nutrient levels. The proportion of reproductive biomass invested in male function was high at flowering (0.86 at both nutrient levels) and much lower at fruiting (0.30 and 0.40 for the high and low nutrient treatment, respectively). Androecium and gynoecium mass exhibited moderately high levels of genetic variance, with broad‐sense heritabilities varying from 0.35 to 0.56. For seedweight no genetic variation was detected. Significant among‐family variation was also detected for the proportion of resources invested in male function at flowering, but not at fruiting. Phenotypic and broad‐sense genetic correlations between androecium and gynoecium mass were positive. Even after adjusting for plant size, as a measure of resource acquisition, maternal families that invested more biomass in the androecium also invested more in the gynoecium. This is consistent with the hypothesis that genetic variation for resource acquisition may in part be responsible for the overall lack of a negative correlation between male and female function. Larger plants had a more female‐biased allocation pattern, brought about by an increase in seedset and seedweight, whereas stamen biomass did not differ between small and large plants. These results are discussed in relation to size‐dependent sex allocation theory (SDS). Our results indicate that the studied population harboured substantial genetic variation for reproductive characters.  相似文献   

14.
Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life‐history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate–ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black‐boxing developmental and physiological mechanisms.  相似文献   

15.
We investigated the quantitative genetics of plasticity in resource allocation between survival, growth and reproductive effort in Crassostrea gigas when food abundance varies spatially. Resource allocation shifted from survival to growth and reproductive effort as food abundance increased. An optimality model suggests that this plastic shift may be adaptive. Reproductive effort plasticity and mean survival were highly heritable, whereas for growth, both mean and plasticity had low heritability. The genetic correlations between reproductive effort and both survival and growth were negative in poor treatments, suggesting trade-offs, but positive in rich ones. These sign reversals may reflect genetic variability in resource acquisition, which would only be expressed when food is abundant. Finally, we found positive genetic correlations between reproductive effort plasticity and both growth and survival means. The latter may reflect adaptation of C. gigas to differential sensitivity of fitness to survival, such that genetic variability in survival mean might support genetic variability in reproductive effort plasticity.  相似文献   

16.
Light-induced plasticity in plant morphology is considered adaptive in terrestrial habitats that vary in light, but remains unexplored for marine habitats. This is despite similar modes of growth, development and photosynthetic equipment in terrestrial and marine photoautotrophs and similarly dynamic light environments. We tested whether manipulations of light quantity and quality induce morphological plasticity in the marine macroalga, Asparagopsis armata. Using multivariate analyses (principal components analyses and multivariate analyses of covariance), we show that correlated morphological traits underlie a fundamental growth strategy characterized by the production of phalanx and guerrilla phenotypes in environments that mimic light and shade respectively. This foraging response is not under simple genetic or environmental control, but influenced by interactions between genotype and environment. Evidence of plasticity and genetic variation in plasticity in a marine modular organism generates additional, testable hypotheses on the ecological consequences of variation in growth form that may further explain the evolution of plasticity.  相似文献   

17.
The ability of individual organisms to alter morphological and life-history traits in response to the conditions they experience is an example of phenotypic plasticity which is fundamental to any population's ability to deal with short-term environmental change. We currently know little about the prevalence, and evolutionary and ecological causes and consequences of variation in life history plasticity in the wild. Here we outline an analytical framework, utilizing the reaction norm concept and random regression statistical models, to assess the between-individual variation in life history plasticity that may underlie population level responses to the environment at both phenotypic and genetic levels. We discuss applications of this framework to date in wild vertebrate populations, and illustrate how natural selection and ecological constraint may alter a population's response to the environment through their effects at the individual level. Finally, we present future directions and challenges for research into individual plasticity.  相似文献   

18.
Trade-offs between acquisition capacities for aboveground and belowground resources were investigated by studying the phenotypic plasticity of leaf and root traits in response to different irradiance levels at low nutrient supply. Two congeneric grasses with contrasting light requirements, Dactylis glomerata and D. polygama, were used. The aim was to analyze phenotypic covariation in components of leaf area and root length in response to above- and belowground resource limitation and the consequences of this variation for resource acquisition and plant growth. At intermediate shading (30 and 20% of full sunlight) the plants were able to maintain their total root length, despite a strongly increased total leaf area and a reduced biomass allocation to roots. This was associated with an unaltered or slightly increased nutrient uptake and growth. At 5.5% relative irradiance, growth was severely reduced, especially in the shade-tolerant D. polygama. The results show that constraints on acquisition capacities for aboveground and belowground resources, caused by biomass allocation, may be alleviated by plasticity in other traits such as tissue-mass density and thickness of roots and leaves. The results also suggest different adaptive constraints for phenotypic plasticity and for genetically determined interspecific variation. Phenotypic plasticity tends to maximize resource acquisition and growth rate in the short term, whereas the higher tissue-mass density and the longer leaf life-span of shade-tolerant species indicate reduced loss rates as a more advantageous species-specific adaptation to shade in the long term.  相似文献   

19.
Social evolution has led to distinct life‐history patterns in social insects, but many colony‐level and individual traits, such as egg size, are not sufficiently understood. Thus, a series of experiments was performed to study the effects of genotypes, colony size and colony nutrition on variation in egg size produced by honey bee (Apis mellifera) queens. Queens from different genetic stocks produced significantly different egg sizes under similar environmental conditions, indicating standing genetic variation for egg size that allows for adaptive evolutionary change. Further investigations revealed that eggs produced by queens in large colonies were consistently smaller than eggs produced in small colonies, and queens dynamically adjusted egg size in relation to colony size. Similarly, queens increased egg size in response to food deprivation. These results could not be solely explained by different numbers of eggs produced in the different circumstances but instead seem to reflect an active adjustment of resource allocation by the queen in response to colony conditions. As a result, larger eggs experienced higher subsequent survival than smaller eggs, suggesting that honey bee queens might increase egg size under unfavourable conditions to enhance brood survival and to minimize costly brood care of eggs that fail to successfully develop, and thus conserve energy at the colony level. The extensive plasticity and genetic variation of egg size in honey bees has important implications for understanding life‐history evolution in a social context and implies this neglected life‐history stage in honey bees may have trans‐generational effects.  相似文献   

20.
Changing environments have the potential to alter the fitness of organisms through effects on components of fitness such as energy acquisition, metabolic cost, growth rate, survivorship, and reproductive output. Organisms, on the other hand, can alter aspects of their physiology and life histories through phenotypic plasticity as well as through genetic change in populations (selection). Researchers examining the effects of environmental variables frequently concentrate on individual components of fitness, although methods exist to combine these into a population level estimate of average fitness, as the per capita rate of population growth for a set of identical individuals with a particular set of traits. Recent advances in energetic modeling have provided excellent data on energy intake and costs leading to growth, reproduction, and other life‐history parameters; these in turn have consequences for survivorship at all life‐history stages, and thus for fitness. Components of fitness alone (performance measures) are useful in determining organism response to changing conditions, but are often not good predictors of fitness; they can differ in both form and magnitude, as demonstrated in our model. Here, we combine an energetics model for growth and allocation with a matrix model that calculates population growth rate for a group of individuals with a particular set of traits. We use intertidal mussels as an example, because data exist for some of the important energetic and life‐history parameters, and because there is a hypothesized energetic trade‐off between byssus production (affecting survivorship), and energy used for growth and reproduction. The model shows exactly how strong this trade‐off is in terms of overall fitness, and it illustrates conditions where fitness components are good predictors of actual fitness, and cases where they are not. In addition, the model is used to examine the effects of environmental change on this trade‐off and on both fitness and on individual fitness components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号