首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Examining ecological processes across spatial scales is crucial as animals select and use resources at different scales. We carried out field surveys in September 2005, March–September 2006, and April 2007, and used ecological niche factor analysis to determine habitat preferences for the giant panda (Ailuropoda melanoleuca) across 4 spatial scales: daily movement, core range, home range, and seasonal elevational migration. We found that giant pandas prefer conifer forest and mixed forest at higher than average elevation (2,157 m) of study area in the 4 scale models. However, we also observed significant scale differences in habitat selection. The strength of habitat preference increased with scale for the 2 disturbed forests (sparse forest and fragmented forest), and decreased with scale for 0–30° gentle slope and south- and north-facing aspect. Furthermore, habitat suitability patterns were scale-dependent. These findings highlight the need to determine species–environment associations across multiple scales for habitat management and species conservation. © 2012 The Wildlife Society.  相似文献   

2.
Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.  相似文献   

3.
The conservation of any species requires understanding and predicting the distribution of its habitat and resource use, including the effects of scale‐dependent variation in habitat and resource quality. Consequently, testing for resource selection at the appropriate scales is critical. We investigated how the resource selection process varies across scales, using koalas in a semi‐arid landscape of eastern Australia as a case study. We asked: at what scales does tree selection by koalas vary across regions? We tested the importance of the variation of our ecological predictors at the following scales: (i) the site‐scale (a stand of trees representing an individual koala's perception of local habitat); (ii) the landscape‐scale (10 × 10 km area representing a space within which a population of koalas exists); and (iii) a combination of these scales. We used a mixed‐modelling approach to quantify variation in selection of individual trees by koalas among sites and landscapes within a 1600 km2 study area. We found that tree species, and tree height, were the most important factors influencing tree selection, and that their effect did not vary across scales. In contrast, preferences for trees of different condition, which is the state of tree canopy health, did vary across landscapes, indicating spatial variation in the selection of trees with respect to tree condition at the landscape‐scale, but not at the site‐scale. We conclude that resource selection processes can depend on the quality of those resources at different scales and their heterogeneous nature across landscapes, highlighting the consequence of scale‐dependent ecological processes. Designing studies that capture the heterogeneity in habitat and resources used by species that have an extensive distribution is an important prerequisite for effective conservation planning and management.  相似文献   

4.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

5.
Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground‐nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite (Colinus virginianus), Eastern Meadowlark (Sturnella magna), and Grasshopper Sparrow (Ammodramus savannarum) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory‐related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species’ nests during high moisture conditions, thus increasing nest survival on these days. Our study highlights how mechanistic approaches to studying cover informs which dimensions are perceived and selected by animals and which dimensions confer fitness‐related benefits.  相似文献   

6.
Habitat selection and its relationship to fitness is a fundamental concept in ecology, but the mechanisms driving this connection are complex and difficult to detect. Despite the difficulties in understanding such intricate relationships, it is imperative that we study habitat selection and its relationship with fitness. We compared habitat selection of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) on the Missouri River (2012–2014) to examine the consequences of those choices on nest and chick survival. We hypothesized that plovers and terns would select habitat that minimized the chance of flooding and predation of eggs, chicks, and adults, but that plovers would also select habitat that would provide foraging habitat for their chicks. We developed an integrated habitat selection model that assessed selection across multiple scales (sandbar and nest scales) and directly modeled the effect of selection on nest and chick survival. In general, the species selected habitat in keeping with our hypotheses, such that predation and flooding, in particular, may have been reduced. Sandbar selection had either a negative or no appreciable effect on nest survival for both species across years. Nest‐site selection in 2012 had a generally positive effect on nest survival and chick survival for both terns and plovers, and this trended toward a negative effect by 2014. This result suggested that early selection decisions appeared to be adaptive, but we speculate that relatively high site fidelity and habitat degradation led to reduced benefit over time. Our results highlight the complex nature of habitat selection and its relationship to fitness.  相似文献   

7.
新疆巴音布鲁克繁殖期大天鹅的生境选择   总被引:2,自引:0,他引:2  
2011年和2012年的6-8月,考察了分布于巴音布鲁克自然保护区的大天鹅(Cygnus cygnus)种群,分析了大天鹅巢址选择特征和育雏期生境选择特征。在野外共记录到了26个大天鹅巢址。与对照样方比较发现,植被高度、水深、所在水域面积、距干扰源距离和安全等级存在显著差异。进一步逻辑斯蒂回归分析表明,植被高度、水深和安全等级是影响大天鹅巢址选择的最主要的3种生境因子。采用样线法对育雏期大天鹅的生境选择进行了调查,发现大天鹅对沼泽湿地表现出正选择性,对草地表现出负选择性。样方法调查中,利用样方与对照样方比较发现,9种生境因子均存在显著差异,逻辑斯蒂回归分析表明,距干扰源距离和安全等级是影响大天鹅育雏期生境选择的最重要的两种因子。这样的选择机制有利于大天鹅更好的躲避敌害,顺利完成孵化和育雏工作。  相似文献   

8.
M. Diaz 《Insectes Sociaux》1991,38(4):351-363
Summary Patterns of abundance and site selection of granivorous ant nests were investigated in extensive cereal croplands of Central Spain. Nest densities and distributions were measured in two consecutive summers (1988 and 1989), together with habitat physiognomy and seed availability. Nest site selection patterns were analysed at two spatial scales (landscape and microhabitat) with respect to habitat physiognomy. Results indicate a very constant and predictable pattern of both nest abundance and nest site selection. Granivorous ant nests were most abundant in shrublands, and shrubby microsites were selected for nest placement. Croplands, and microsites with high covers of bare ground and litter, were avoided. These patterns were consistent between years despite a 1.7-fold increase in shrubland nest densities, that was attributed to the exceptionally dry winter between nest censuses. I suggest that winter survivorship of ant nests in the unploughed landscape units, and periodic ploughing in croplands, may be the main factors constraining granivorous ant densities in the landscape studied.  相似文献   

9.
The rapid pace of wind-energy development has increased stakeholder concerns regarding the potential effects on wildlife. Locations targeted for wind-energy development frequently overlap prairie grouse and greater sage-grouse (Centrocercus urophasianus) habitats. Research suggests that anthropogenic developments may have negative effects on these species. There is, however, no information published regarding the effect of wind-energy development on Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus), a subspecies that has twice been petitioned for Endangered Species Act protection. To address this need, from 2014 to 2015 we studied Columbian sharp-tailed grouse nesting ecology across restored grasslands in eastern Idaho, USA, where a 215-turbine wind-energy complex had been developed. We monitored 147 nests from 135 females captured at leks 0.1–13.8 km from wind turbines. We used an information-theoretic approach to evaluate the influence of wind-energy infrastructure and habitat characteristics on nest-site selection and daily nest survival. We did not detect any influence of wind-energy infrastructure on nest-site selection or nest survival. Nest-site selection and daily nest survival were influenced by vegetation structure and composition measured at 2 spatial scales. Females selected nest sites with more restored grassland containing >30% forb cover within the nesting core-use area (i.e., 60 ha around the nest) and exhibited a functional response to the availability of that land cover type. Daily nest survival was best predicted by visual obstruction at the nest site and the amount of restored grassland containing >30% forb cover within the nesting core-use area. We recommend wildlife managers continue to implement management practices that will provide bunchgrass-dominated grasslands with >30% forb cover in restored grasslands (e.g., Conservation Reserve Program fields) within Columbian sharp-tailed grouse range. © The Wildlife Society, 2019  相似文献   

10.
ABSTRACT Species in the family Psittacidae may be particularly vulnerable to anthropogenic habitat transformations that reduce availability of suitable breeding sites at different spatial scales. In southern Chile, loss of native forest cover due to agricultural conversion may impact populations of Slender‐billed Parakeets (Enicognathus leptorhynchus), endemic secondary cavity‐nesting psittacids. Our objective was to assess nest‐site selection by Slender‐billed Parakeets in an agricultural‐forest mosaic of southern Chile at two spatial scales: nest trees and the habitat surrounding those trees. During the 2008–2009 breeding seasons, we identified nest sites (N= 31) by observing parakeet behavior and using information provided by local residents. Most (29/31) nests were in mature Nothofagus obliqua trees. By comparing trees used for nesting with randomly selected, unused trees, we found that the probability of a tree being selected as a nest site was positively related to the number of cavity entrances, less dead crown, and more basal injuries (e.g., fire scars). At the nesting‐habitat scale, nest site selection was positively associated with the extent of basal injuries and number of cavity entrances in trees within 50 m of nest trees. These variables are likely important because they allow nesting parakeets to minimize cavity search times in potential nesting areas, thereby reducing energetic demands and potential exposure to predators. Slender‐billed Parakeets may thus use a hierarchical process to select nest sites; after a habitat patch is chosen, parakeets may then inspect individual trees in search of a suitable nest site. Effective strategies to ensure persistence of Slender‐billed Parakeets in agricultural‐forest mosaics should include preservation of both individual and groups of scattered mature trees.  相似文献   

11.
12.
We evaluated habitat selection by European beaver Castor fiber L. across a spatial gradient from local (within the family territory) to a broad, ecoregional scale. Based on aerial photography, we assessed the habitat composition of 150 beaver territories along the main water bodies of the Vistula River delta (northern Poland) and compared these data with 183 randomly selected sites not occupied by the species. The beavers preferred habitats with high availability of woody plants, including shrubs, and avoided anthropogenically modified habitats, such as arable lands. Within a single family territory, we observed decreasing woody plant cover with increasing distance from a colony centre, which suggests that beaver habitat preferences depend on the assessment of both the abundance and spatial distribution of preferred habitat elements. We tested the importance of spatial scale in beaver habitat selection with principal coordinates of neighbour matrices analysis, which showed that the geographical scale explained 46.7% of the variation in habitat composition, while the local beaver density explained only 10.3% of this variability. We found two main spatial gradients that were related to the broad spatial scale: first, the most important gradient was related to the largest distances between beaver sites and was independent of woody plant cover and the local beaver site density. The second most important gradient appeared more locally and was associated with these variables. Our results indicate that European beaver habitat selection was affected by different scale‐related phenomena related 1) to central place foraging behaviour, which resulted in the clumped distribution of woody plants within the territory, and 2) local population density and woody plant cover. Finally, 3) habitat selection occurs independently across the largest spatial scale studied (e.g. between watersheds), which was probably due to the limited natal dispersal range of the animals.  相似文献   

13.
应用资源选择函数研究朱Huan的巢址选择   总被引:19,自引:2,他引:17  
本文介绍了资源选择函数的原理与方法,并分析了朱Huan(Nipponia nippon)的巢址选择。我们将上述结果与主成分分析的结果进行了比较,发展两种方法都显示水田面积,营巢树高度,海拔高度和人类干扰程度对朱Huan巢址选择有较大影响,而巢向,巢上郁闭度,坡向和坡度对朱Huan影响较小。然而,两种方法也有明显的差异,资源选择函数显示营巢地的坡位非常重要,而主成分分析显示植被密度比较重要。分析表明资源选择函数更好地反映了多种生境因素对朱Huan巢址选择的影响,本文探讨了应用资源选择函数所必须注意的对照样方选择和参数的独立性问题,并提出了对朱Huan保护工作的建议。  相似文献   

14.
Across portions of the western Great Plains in North America, natural fire has been removed from grassland ecosystems, decreasing vegetation heterogeneity and allowing woody encroachment. The loss of fire has implications for grassland species requiring diverse vegetation patches and structure or patches that have limited occurrence in the absence of fire. The lesser prairie-chicken (Tympanuchus pallidicinctus) is a declining species of prairie-grouse that requires heterogeneous grasslands throughout its life history and fire has been removed from much of its occupied range. Patch-burn grazing is a management strategy that re-establishes the fire-grazing interaction to a grassland system, increasing heterogeneity in vegetation structure and composition. We evaluated the effects of patch-burn grazing on lesser prairie-chicken space use, habitat features, and vegetation selection during a 4-year field study from 2014–2017. Female lesser prairie-chickens selected 1- and 2-year post-fire patches during the lekking season, ≥4-year post-fire patches during the nesting season, and year-of-fire and 1-year post-fire patches during post-nesting and nonbreeding seasons. Vegetation selection during the lekking season was not similar to available vegetation in selected patches, suggesting that lesser prairie-chickens cue in on other factors during the lekking season. During the nesting season, females selected nest sites with greater visual obstruction, which was available in ≥4-year post-fire patches; during the post-nesting season, females selected sites with 15–25% bare ground, which was available in the year-of-fire, 1-year post-fire, and 2-year post-fire patches; and during the nonbreeding season they selected sites with lower visual obstruction, available in the year-of-fire and 1-year post-fire patches. Because lesser prairie-chickens selected all available time-since-fire patches during their life history, patch-burn grazing may be a viable management tool to restore and maintain lesser prairie-chicken habitat on the landscape. © 2021 The Wildlife Society.  相似文献   

15.
动物的生境选择具有空间尺度依赖性, 在不同空间尺度上影响生境选择的环境因素有所不同。研究不同空间尺度下动物生境选择的关键影响因子及其季节性变化, 对于全面了解物种的生境资源需求和开展生境保护具有重要意义。绿尾虹雉(Lophophorus lhuysii)是中国特有的高山雉类, 国家一级重点保护野生动物, 具有极高的保护价值。然而, 目前尚未对其不同尺度和时期的生境选择进行过探究。本研究于2019年10月至2020年10月, 在四川卧龙国家级自然保护区的羊角湾、魏家沟和文扎都3个区域共布设15条样线、303个样方, 并结合红外相机监测(176个红外相机位点), 对保护区内绿尾虹雉种群的生境利用状况进行了调查, 使用主成分分析和逻辑斯蒂回归模型分别从景观和微生境两个尺度对繁殖期(3‒8月)和非繁殖期(9月至翌年2月)的生境选择模式进行了分析。结果显示, 在景观尺度上, 在繁殖期和非繁殖期都显著偏好海拔较高(3,700‒ 4,300 m)、坡度较小(27°‒33°)、靠近阳坡、草甸和流石滩比例较高而森林和灌丛比例较低的生境。在微生境尺度上, 绿尾虹雉在繁殖期显著偏好岩石盖度较高的生境; 而非繁殖期则显著偏好草本盖度较高、灌木盖度和落叶盖度较低的生境。研究表明, 绿尾虹雉在景观和微生境尺度上均对生境有明显的选择性, 并且其微生境选择还存在季节性变化, 反映了该物种在生活史不同阶段具有不同的资源需求。本研究丰富了绿尾虹雉的基础生态学信息, 为卧龙及其他自然保护区绿尾虹雉的生境管理和种群保护工作提供了参考。  相似文献   

16.
Grazing management recommendations often sacrifice the intrinsic heterogeneity of grasslands by prescribing uniform grazing distributions through smaller pastures, increased stocking densities, and reduced grazing periods. The lack of patch-burn grazing in semi-arid landscapes of the western Great Plains in North America requires alternative grazing management strategies to create and maintain heterogeneity of habitat structure (e.g., animal unit distribution, pasture configuration), but knowledge of their effects on grassland fauna is limited. The lesser prairie-chicken (Tympanuchus pallidicinctus), an imperiled, grassland-obligate, native to the southern Great Plains, is an excellent candidate for investigating effects of heterogeneity-based grazing management strategies because it requires diverse microhabitats among life-history stages in a semi-arid landscape. We evaluated influences of heterogeneity-based grazing management strategies on vegetation structure, habitat selection, and nest and adult survival of lesser prairie-chickens in western Kansas, USA. We captured and monitored 116 female lesser prairie-chickens marked with very high frequency (VHF) or global positioning system (GPS) transmitters and collected landscape-scale vegetation and grazing data during 2013–2015. Vegetation structure heterogeneity increased at stocking densities ≤0.26 animal units/ha, where use by nonbreeding female lesser prairie-chickens also increased. Probability of use for nonbreeding lesser prairie-chickens peaked at values of cattle forage use values near 37% and steadily decreased with use ≥40%. Probability of use was positively affected by increasing pasture area. A quadratic relationship existed between growing season deferment and probability of use. We found that 70% of nests were located in grazing units in which grazing pressure was <0.8 animal unit months/ha. Daily nest survival was negatively correlated with grazing pressure. We found no relationship between adult survival and grazing management strategies. Conservation in grasslands expressing flora community composition appropriate for lesser prairie-chickens can maintain appropriate habitat structure heterogeneity through the use of low to moderate stocking densities (<0.26 animal units/ha), greater pasture areas, and site-appropriate deferment periods. Alternative grazing management strategies (e.g., rest-rotation, season-long rest) may be appropriate in grasslands requiring greater heterogeneity or during intensive drought. Grazing management favoring habitat heterogeneity instead of uniform grazing distributions will likely be more conducive for preserving lesser prairie-chicken populations and grassland biodiversity. © 2021 The Wildlife Society.  相似文献   

17.
Identifying habitat or nesting microhabitat variables associated with high levels of nest success is important to understand nest site preferences and bird–habitat relationships. Little is known about cavity availability and nest site requirements of cavity nesters in southern hemisphere temperate forests, although nest site limitation is suggested. Here we ask which characteristics are selected by the Austral parakeet (Enicognathus ferrugineus) for nesting in Araucaria araucana–Nothofagus pumilio forest in Argentine Patagonia. We compared nest plot and tree characteristics with unused plots and trees among areas of different A. araucana–N. pumilio density. We also examine whether nest plot and tree use and selection, and the associated consequences for fitness of Austral parakeets are spatially related to forest composition. Austral parakeets showed selectivity for nests at different spatial scales, consistently choosing isolated live and large trees with particular nest features in a non‐random way from available cavities. Mixed A. araucana–N. pumilio forests are ideal habitat for the Austral parakeets of northern Patagonia, offering numerous potential cavities, mainly in N. pumilio. We argue that Austral parakeet reproduction and fitness is currently very unlikely to be limited by cavity availability, although this situation may be rapidly changing. Natural and human disturbances are modifying south temperate forests with even‐aged mid‐successional stands replacing old growth forests. Cavity nesting species use and need old growth forests, due to the abundance of cavities in large trees and the abundance of larvae in old wood. Neither of the latter resources is sufficiently abundant in mid‐successional forests, increasing the vulnerability and threatening the survival of the Austral.  相似文献   

18.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

19.
Determination of factors affecting nest habitat selection is a major topic in avian ecology, with strong implications for conservation purposes especially for the species with unfavorable status. The turtle dove (Streptopelia turtur) is a vulnerable species that has undergone a rapid and serious decline across its distribution range. I investigated the effect of different variables at two spatial scales (10-m radius, nest site; and 100-m radius, landscape) on the probability of presence of turtle dove nests in an agroforestry system of Central Morocco. Topography, habitat structure, human disturbance, and land use parameters were measured at nests (n?=?70) and random points (n?=?70) at both scales. Generalized linear model analyses showed that, at the nest site scale, tree height best explained occurrence of turtle dove nests (with nest occurring preferentially in smaller trees). At the landscape scale, nest occurrence probability decreased with elevation and distance to the nearest forest edge, and increased with forest cover and distance to the nearest habitation. Comparison of explanatory power of the single-scale models showed that the most relevant scale was the nest site level, followed by landscape scales, but the model including both nest-scale and landscape-scale variables was best. The variation partitioning analysis confirmed this pattern. In study area, the turtle dove nest habitat selection process occurs within a relatively small scale, but the joint effect of variables at the two scales is relevant. From a practical perspective, it would be interesting to reproduce the same experimental approach on other Mediterranean breeding habitats (agricultural and other forest habitats) to find out if this species would adopt the same nest habitat selection pattern.  相似文献   

20.
Anthropogenic habitat loss and fragmentation affect populations worldwide. For example, many bird populations of boreal forests have declined due to intensive forestry. To target conservation actions for such species, determining the key factors that affect their habitat selection is essential. Remote sensing methods provide highly potential means to measure habitat variables over large areas. We aim at identifying the key‐features of habitats by utilizing remote sensing data. As a case example, we study the nest site selection of a primary hole‐nesting passerine, the willow tit Poecile montanus, in a managed forest landscape. Using presence–absence data, we determine the most important habitat characteristics of the nest sites for three spatial scales by generalized linear mixed effect models. Our results highlight the importance of the availability of nesting sites – standing decaying deciduous trees – in the nest site selection of P. montanus. It seems to prefer moist habitats with high densities of deciduous trees and to avoid open areas, but does not require mature or intact habitats. Most of the nest site selection seems to occur within small scales. In this case, remote sensing data alone was insufficient for producing reliable models, but adding information of an ecologically important feature from direct field surveys greatly improved model performances. For the conservation and maintenance of dead wood dependent species, changes in forestry practices are necessary to keep the key characteristics of the habitat. Most importantly, continuous availability of standing decaying wood should be secured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号