首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cre‐loxP system is frequently used for site‐specific recombination in animal cells. The equilibrium and specificity of the recombination reaction can be controlled using mutated loxPs. In the present study, we designed an accumulative site‐specific gene integration system using Cre recombinase and mutated loxPs in which the Cre‐mediated cassette exchange reaction is infinitely repeatable for target gene integration into loxP target sites. To evaluate the feasibility and usefulness of this system, a series of integration reactions were repeated and confirmed in vitro using Cre recombinase protein and plasmids. Accumulative gene integration was also performed on the genome of Chinese hamster ovary (CHO) cells. The results indicated that the system was applicable for repeated gene integration of multiple genes to the target sites on both plasmids and CHO cell genomes. This gene integration system provides a novel strategy for gene amplification and for biological analyses of gene function through the genetic modification of cells and organisms. Biotechnol. Bioeng. 2010;105: 1106–1114. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

3.
We developed a conditional and inducible gene knockout methodology that allows effective gene deletion in mouse cardiomyocytes. This transgenic mouse line was generated by coinjection of two transgenes, a “reverse” tetracycline‐controlled transactivator (rtTA) directed by a rat cardiac troponin T (Tnnt2) promoter and a Cre recombinase driven by a tetracycline‐responsive promoter (TetO). Here, Tnnt2‐rtTA activated TetO‐Cre expression takes place in cardiomyocytes following doxycycline treatment. Using two different mouse Cre reporter lines, we demonstrated that expression of Cre recombinase was specifically and robustly induced in the cardiomyocytes of embryonic or adult hearts following doxycycline induction, thus, allowing cardiomyocyte‐specific gene disruption and lineage tracing. We also showed that rtTA expression and doxycycline treatment did not compromise cardiac function. These features make the Tnnt2‐rtTA;TetO‐Cre transgenic line a valuable genetic tool for analysis of spatiotemporal gene function and cardiomyocyte lineage tracing during developmental and postnatal periods. genesis 48:63–72, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
To determine the neuronal function of genes in vivo, the neuron-specific deletion of a target gene in animals is required. Tau, a microtubule-associated protein, is expressed abundantly in neurons but scarcely in glias and other tissues. Therefore, to generate mice that express Cre recombinase in neurons, we inserted Cre recombinase into the tau locus. By crossing these tau-Cre mice with ROSA26 lacZ reporter mice, we observed Cre recombinase activity in the neurons from most of the central nervous system, but not in glias nor in non-neuronal tissues. This neuronal-specific activity appeared during embryogenesis. We further crossed tau-Cre mice with rab8 ‘floxed’ mice, and showed that the recombination was nearly complete in the brain, but incomplete or non-detectable in other tissues. Thus, tau-Cre knockin mouse is a useful tool for studying the neuronal function of a gene in vivo.  相似文献   

5.
细胞可透过性Cre重组酶表达、纯化及生物活性检测(英)   总被引:1,自引:0,他引:1  
Cre/lox P系统由Cre位点特异重组酶和可被Cre特异性识别的lox P位点构成,该系统广泛用于条件性基因敲除和表达,以研究基因功能.为了表达和纯化一种细胞可透过性Cre重组酶(即His6-NLS-Cre-MTS);经IPTG诱导,在BL21(DE3)宿主菌成功表达His6-NLS-Cre-MTS融合蛋白,通过His-Bond Ni-NTA树脂分离并纯化了该蛋白质,随后借助细胞和非细胞的重组系统成功检测了His6-NLS-Cre-MTS的生物活性.细胞可透过性Cre重组酶提供了一种快捷而高效的在细胞和在体水平进行遗传操作的新工具.  相似文献   

6.
7.
We have tested the CinH-RS2 and ParA-MRS site-specific deletion systems in tomato (Solanum lycopersicum L.). The ParA-MRS system is derived from the broad-host-range plasmid RK2, where the 222 aa ParA recombinase recognizes a 133 bp multimer resolution site (MRS). The CinH-RS2 system is derived from Acinetobacter plasmids pKLH2 and pKLH204, where the 188 amino acid CinH recombinase recognizes a 113-bp recombination site known as RS2. In this study, target lines containing a DNA segment flanked by recombination sites were crossed to recombinase-expressing lines producing CinH or ParA recombinase. CinH-mediated recombination of RS2 substrates was detected in 2 of 3 F1 plants that harbor both the target and recombinase loci. On the other hand, recombination mediated by ParA was not detected among F1 plants, but was found among 13 of 47 F2 plants. These data show that both systems can mediate site-specific DNA deletion in the tomato genome, and, upon further refinement, can provide additional molecular tools for tomato improvement through precise genome manipulation. As the target construct also contains additional recombination sites for site-specific integration by other recombination systems, these tomato lines could be used for future testing of gene stacking through site-specific integration.  相似文献   

8.
Use of the cre transgene in in vivo mouse models to delete a specific ‘floxed'' allele is a well-accepted method for studying the effects of spatially or temporarily regulated genes. During the course of our investigation into the effect of cyclic adenosine 3′,5′-monophosphate-dependent protein kinase A (PKA) expression on cell death, we found that cre expression either in cultured cell lines or in transgenic mice results in global changes in PKA target phosphorylation. This consequently alters gene expression profile and changes in cytokine secretion such as IL-6. These effects are dependent on its recombinase activity and can be attributed to the upregulation of specific inhibitors of PKA (PKI). These results may explain the cytotoxicity often associated with cre expression in many transgenic animals and may also explain many of the phenotypes observed in the context of Cre-mediated gene deletion. Our results may therefore influence the interpretation of data generated using the conventional cre transgenic system.  相似文献   

9.
The FLP recombinase of yeast catalyses site-specific recombination between repeated FLP recombinase target (FRT) elements in yeast and in heterologous system (Escherichia coli, Drosophila, mosquito and cultured mammalian cells). In this report, it is shown that transient FLP recombinase expression can recombine and activate an extrachromosomal silent reporter gene following coinjection into fertilized one-cell mouse eggs. Furthermore, it is demonstrated that introduction of a FLP-recombinase expression vector into transgenic one-cell fertilized mouse eggs induces a recombination event at a chromosomal FRT target locus. The resulting event occured at the one-cell stage and deleted a chromosomal tandem array of a FRT containinglacZ expression cassette down to one or two copies. These results demonstrate that the FLP recombinase can be utilized to manipulate the genome of transgenic animals and suggest that FLP recombinase-mediated plasmid-to-chromosome targeting is feasible in microinjected eggs.  相似文献   

10.
Marker genes are essential for the selection and identification of rarely occurring transformation events generated in biotechnology. This includes plastid transformation, which requires that multiple copies of the modified chloroplast genome be present to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here, we demonstrate the precise excision of attP‐ and attB‐flanked DNA from the plastid genome mediated by the large serine recombinase Bxb1. We transformed the tobacco plastid genome with the pTCH‐PB vector containing a stuffer fragment of DNA flanked by directly oriented nonhomologous attP and attB recombinase recognition sites. In the absence of the Bxb1 recombinase, the transformed plastid genomes were stable and heritable. Nuclear‐transformed transgenic tobacco plants expressing a plastid‐targeted Bxb1 recombinase were crossed with transplastomic pTCH‐PB plants, and the T1 hybrids exhibited efficient excision of the target sequence. The Bxb1–att system should prove to be a useful tool for site‐specifically manipulating the plastid genome and generating marker‐free transplastomic plants.  相似文献   

11.
We have generated a transgenic mouse line that expresses improved Cre recombinase (iCre) under the control of the testis‐expressed gene 101 (Tex101) promoter. This transgenic mouse line was named Tex101‐iCre. Using the floxed ROSA reporter mice, we found that robust Cre recombinase activity was detected in postnatal testes with weak or no activity in other tissues. Within the testis, Cre recombinase was active in spermatogenic cells as early as the prospermatogonia stage at day 1 after birth. In 30‐ and 60‐day‐old mice, positive Cre recombinase activity was detected not only in prospermatogonia but also in spermatogenic cells at later stages of spermatogenesis. There was little or no Cre activity in interstitial cells. Breeding wild‐type females with homozygous floxed fibroblast growth factor receptor 2 (Fgfr2) males carrying the Tex101‐iCre transgene did not produce any progeny with the floxed Fgfr2 allele. All the progeny inherited a recombined Fgfr2 allele, indicating that complete deletion of the floxed Fgfr2 allele by Tex101‐iCre can be achieved in the male germline. Furthermore, FGFR2 protein was not detected in spermatocytes and spermatids of adult Fgfr2fl/fl;Tex101‐iCre mice. Taken together, our results suggest that the Tex101‐iCre mouse line allows the inactivation of a floxed gene in spermatogenic cells in adult mice, which will facilitate the functional characterization of genes in normal spermatogenesis and male fertility. genesis 48:717–722, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Random T–DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T–DNA copies, the risk of mutating the host genome and the difficulty of stacking well‐defined traits. Therefore, recombination systems have been proposed to integrate the T–DNA at a pre‐selected site in the host genome. Here, we demonstrate the capacity of the ?C31 integrase (INT) for efficient targeted T–DNA integration. Moreover, we show that the iterative site‐specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre‐selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T–DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site‐specific integration (SSI) of this T–DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium‐mediated integration, allowing the serial integration of transgenic DNA sequences in plants.  相似文献   

13.
Conditional gene targeting in macrophages and granulocytes using LysMcre mice   总被引:30,自引:0,他引:30  
Conditional mutagenesis in mice has recently been made possible through the combination of gene targeting techniques and site–directed mutagenesis, using the bacteriophage P1–derived Cre/loxP recombination system. The versatility of this approach depends on the availability of mouse mutants in which the recombinase Cre is expressed in the appropriate cell lineages or tissues. Here we report the generation of mice that express Cre in myeloid cells due to targeted insertion of the cre cDNA into their endogenous M lysozyme locus. In double mutant mice harboring both the LysMcre allele and one of two different loxP–flanked target genes tested, a deletion efficiency of 83–98 was determined in mature macrophages and near 100 in granulocytes. Partial deletion (16) could be detected in CD11c+ splenic dendritic cells which are closely related to the monocyte/macrophage lineage. In contrast, no significant deletion was observed in tail DNA or purified T and B cells. Taken together, LysMcre mice allow for both specific and highly efficient Cre–mediated deletion of loxP–flanked target genes in myeloid cells.  相似文献   

14.
To study paraxial mesoderm formation in the mouse, transgenic lines that can be used to either selectively delete or express genes of interest in the paraxial mesoderm are required. We have generated a transgenic mouse line that expresses Cre recombinase in the paraxial mesoderm (PAM) beginning at e7.5. A lacZ Cre recombinase reporter line showed that in addition to PAM and its derivatives, lateral plate and intermediate mesoderm derivatives were also exposed to Cre activity, while the node, notochord, and cardiac mesoderm were not. We further demonstrate that 70–75% of the fibroblasts generated from Dll1‐msd Cre, ROSA26‐rtTA embryos possess Cre recombinase activity. These mice can therefore be used in combination with tet‐responsive transgenic lines to generate mesoderm‐derived embryonic fibroblasts that inducibly express a gene of interest. genesis 47:309–313, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The Cre-lox site-specific recombination system of bacteriophage P1 was used to excise a firefly luciferase (luc) gene which had previously been incorporated into the tobacco genome. The excision event was due to site-specific DNA recombination between two lox sequences flanking the luc gene and was catalyzed by the Cre recombinase introduced by cross-fertilization. Recombination resulted in the fusion of a promoter with a distally located hygromycin phosphotransferase (hpt) coding sequence and the excision event was monitored as a phenotypic change from expression of luc to expression of hpt. The efficiency of recombination was estimated from the exchange of gene activity and confirmed by molecular analysis. The relevance to potential applications of site-specific deletion-fusion events for chromosome engineering are discussed.  相似文献   

16.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

17.
The gene (aspA) encoding the extracellular aspartyl protease from Penicillium roqueforti was cloned and characterized. Northern hybridization analyses and β-casein degradation assays revealed that aspA was strongly induced by casein in the medium and efficiently repressed by ammonia. External alkaline pH overrides casein induction, resulting in aspA repression. Cis-acting motifs known to mediate nitrogen and pH regulation of fungal gene expression are present in the aspA promoter and protein-DNA binding experiments showed that mycelial proteins interact with various regions of the promoter. Due to the efficient environmental controls on aspA expression, the promoter of aspA is an attractive candidate for the development of a controllable gene expression system in P. roqueforti. Received: 20 March 1997 / Accepted: 21 June 1997  相似文献   

18.
位点特异重组系统由重组酶和相应的重组酶识别位点组成,通过两者间的相互作用,实现外源基因精确整合与切除等一系列遗传操作.主要可分为Cre/lox系统、FLP/frt系统、R/RS系统和Gin/gix系统.目前,研究最充分应用最广泛的位点特异重组系统为Cre/lox系统.此系统为位点特异重组系统家族中的一员,由38.5kDCre重组酶和34bplox位点组成,最早被应用于动物转基因研究,包括基因敲除、基因激活、基因易位等.近年来,随着研究的深入,Cre/lox系统被逐步应用到植物研究中,并在诸多领域取得重大进展.本文总结归纳了Cre/lox系统在定点整合、定点切除以及叶绿体转化等方面的最新研究成果,旨在为利用Cre/lox系统构建环境安全和高效表达的植物遗传转化体系提供参考.  相似文献   

19.
Activity of the yeast FLP recombinase in Arabidopsis   总被引:3,自引:0,他引:3  
The coding sequence for FLP recombinase, originally from the 2 plasmid of Saccharomyces cerevisiae, was introduced into Arabidopsis behind the cauliflower mosaic virus 35S promoter. FLP activity was monitored by the glucuronidase activity resulting from inversion of an antisense-oriented GUS reporter gene flanked by a pair of FRT target sites in inverted repeat. FLP-dependent Gus activity was observed in both transient assays and transgenic plants. The FLP system will be useful for a variety of in planta genetic manipulations.  相似文献   

20.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes. Received: 30 July 1998 / Accepted: 2 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号