首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much attention has been paid to ecology and evolution of damage-induced plant responses. Recently, it has been emphasized that phenotypic plasticity, such as induced plant responses, has the potential to lead to evolutionary changes of interacting partners. Here, we report that induced plant regrowth promotes a locally adaptive feeding preference of a leaf beetle, Plagiodera versicolora . We found that there was among-population variation in the strength of the feeding preference of the leaf beetle for leaf-age types of conspecific host plants. The strength of the preference was positively correlated to leaf production of host plants across populations, and the intensity of induced regrowth was likely to have been responsible for geographic variation in new leaf production. Within one population, we detected a significant additive genetic variance and heritability in the preference for consuming new vs. old leaves. Moreover, the strength of preference was significantly related to egg production depending on the leaf-age types. Thus, allopatric populations can evolutionarily develop different adaptive preference, according to locally distinct patterns of induced host regrowth.  相似文献   

2.
Abstract.  1. We examined the plant-mediated indirect effects of the stem-boring moth Endoclita excrescens (Lepidoptera: Hepialidae) on the leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) in three willow species, Salix gilgiana , S. eriocarpa , and S. serissaefolia.
2. When the stem-boring moth larvae damaged stems in the previous year, willows were stimulated to produce vigorously growing lateral shoots on these stems. These new lateral shoots were significantly longer and the upper leaves had significantly higher nitrogen and water content than current-year shoots on unbored stems, although the carbon content and leaf dry mass were not different between lateral and current-year shoots.
3. In the field, leaf beetle larvae and adults had significantly greater densities on lateral shoots of bored stems than on current-year shoots of unbored stems. A laboratory experiment showed that female beetles had significantly greater mass and fecundity when fed on leaves of newly-emerged lateral shoots. Thus, the stem-boring moth had a positive effect on the temporally and spatially separated leaf beetle by increasing resource availability by inducing compensatory regrowth.
4. The strength of the indirect effects on the density and performance of the leaf beetle differed among willow species, because there was interspecific variation in host quality and herbivore-induced changes in plant traits. In particular, we suggest that the differences in magnitude of the changes among willow species in shoot length and leaf nitrogen content greatly affected the strength of the plant-regrowth mediated indirect effect, coupled with host-plant preference of the leaf beetle.  相似文献   

3.
Summary The relationship between the food selection of four leaf beetle species (Phratora vitellinae, Plagiodera versicolora, Lochmaea capreae, Galerucella lineola) and the phenolic glycosides of willow (Salix spp.) leaves was tested in laboratory food choice experiments. Four willow species native to the study area (Eastern Finland) and four introduced, cultivated willows were tested.The willow species exhibited profound differences in their phenolic glycoside composition and total concentration. The food selection patterns of the leaf beetles followed closely the phenolic glycoside spectra of the willow species. Both the total amount and the composition of phenolic glycosides affected the feeding by the beetles. Phenolic glycosides apparently have both stimulatory and inhibitory influences on leaf beetle feeding depending on the degree of adaptation of a particular insect. Very rare glycosides or exceptional combination of several glycoside types seem to provide certain willow species with high level of resistance against most herbivorous insects. Analogously the average absolute amount of leaf beetle feeding was lower on the introduced willows than on the native species to which the local herbivores have a good opportunity to become adapted.  相似文献   

4.
Geographic isolation is the first step in insect herbivore diet specialization. Such specialization is postulated to increase insect fitness, but may simultaneously reduce insect ability to colonize novel hosts. During the Paleocene‐Eocene, plants from the order Zingiberales became isolated either in the Paleotropics or in the Neotropics. During the Cretaceous, rolled‐leaf beetles diversified in the Neotropics concurrently with Neotropical Zingiberales. Using a community of Costa Rican rolled‐leaf beetles and their Zingiberales host plants as study system, we explored if previous geographic isolation precludes insects to expand their diets to exotic hosts. We recorded interactions between rolled‐leaf beetles and native Zingiberales by combining DNA barcodes and field records for 7450 beetles feeding on 3202 host plants. To determine phylogenetic patterns of diet expansions, we established 20 experimental plots in the field, in which we planted plots five exotic Zingiberales, recording beetles feeding on these exotic hosts. In the laboratory, using both native and exotic host plants, we reared a subset of insect species that had expanded their diets to the exotic plants. The original plant–herbivore community comprised 24 beetle species feeding on 35 native hosts, representing 103 plant–herbivore interactions. After exotic host plant introduction, 20 percent of the beetle species expanded their diets to exotic Zingiberales. Insects only established on exotic hosts that belong to the same plant family as their native hosts. Laboratory experiments show that beetles are able to complete development on these novel hosts. In conclusion, rolled‐leaf beetles are preadapted to expand their diets to novel host plants even after millions of years of geographic isolation.  相似文献   

5.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

6.
Abstract 1. As herbivory often elicits systemic changes in plant traits, indirect interactions via induced plant responses may be a pervasive feature structuring herbivore communities. Although the importance of this phenomenon has been emphasised for herbivorous insects, it is unknown if and how induced responses contribute to the organisation of other major phytoparasitic taxa. 2. Survey and experimental field studies were used to investigate the role of plants in linking the dynamics of foliar‐feeding insects and root‐feeding nematodes on tobacco, Nicotiana tabacum. 3. Plant‐mediated interactions between insects and nematodes could largely be differentiated by insect feeding guild, with positive insect–nematode interactions predominating with leaf‐chewing insects (caterpillars) and negative interactions occurring with sap‐feeding insects (aphids). For example, insect defoliation was positively correlated with the abundance of root‐feeding nematodes, but aphids and nematodes were negatively correlated. Experimental field manipulations of foliar insect and nematode root herbivory also tended to support this outcome. 4. Overall, these results suggest that plants indirectly link the dynamics of divergent consumer taxa in spatially distinct ecosystems. This lends support to the growing perception that plants play a critical role in propagating indirect effects among a diverse assemblage of consumers.  相似文献   

7.
Temperature can regulate a number of important biological processes and species interactions. For example, environmental temperature can alter insect herbivore consumption, growth and survivorship, suggesting that temperature‐driven impacts on herbivory could influence plant community composition or nutrient cycling. However, few studies to date have examined whether rising temperature influences herbivore preference and performance among multiple plant species, which often dictates their impact at the community level. Here, we assessed the effects of temperature on the performance and preference of the generalist herbivore Popillia japonica among nine plant species. We show that, on average, consumption rates and herbivore performance increased at higher temperatures. However, there was considerable variation among plant species with consumption and performance increasing on some plant species at higher temperatures but decreasing on others. Plant nutritional quality appeared to influence these patterns as beetles increased feeding on high‐nitrogen plants with increasing temperature, suggesting stronger nitrogen limitation. In addition to changes in feeding rates, feeding preferences of P. japonica shifted among temperatures, a pattern that was largely explained by differential deterrence of plant chemical extracts at different temperatures. In fact, temperature‐induced changes in the efficacy of plant chemical extracts led P. japonica to reduce its diet breadth at higher temperatures. Our results indicate that rising temperatures will influence herbivore feeding behavior by altering the importance of plant nutritional and chemical traits, suggesting that climate change will alter the strength and sign of plant–insect interactions.  相似文献   

8.
We examined whether larvae of the gall midge Rabdophaga rigidae (Diptera: Cecidomyiidae) can modify the seasonal dynamics of the density of a leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae), by modifying the leaf flushing phenology of its host willow species, Salix serissaefolia and Salix eriocarpa (Salicaceae). To test this, we conducted field observations and a laboratory experiment. The field observations demonstrated that the leaf flushing phenology of the willows and the seasonal dynamics of the beetle density differed between shoots with stem galls and shoots without them. On galled shoots of both willow species, secondary shoot growth and secondary leaf production were promoted; consequently, leaf production showed a bimodal pattern and leaf production periods were 1 to 2 months longer than on non‐galled shoots. The adult beetle density on galled shoots was thus enhanced late in the season, and was found to change seasonally, synchronizing with the production of new leaves on the host willow species. From the results of our laboratory experiment, we attributed this synchrony between adult beetle density and willow leaf flush to beetles’ preference to eat new leaves rather than old. Indeed, beetles consumed five times more of the young leaves when they were fed both young and old leaves. These results indicate that stem galls indirectly enhance the adult beetle density by enhancing food quality and quantity late in the beetle‐feeding season. We therefore conclude that midge galls widen the phenological window for leaf beetles by extending the willows’ leaf flush periods.  相似文献   

9.
Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity.  相似文献   

10.
It is increasingly recognized that the ecology of communities and evolution of species within communities are interdependent, and researchers have been paying attention to this rapidly emerging field of research, i.e., through studies on eco-evolutionary dynamics. Most of the studies on eco-evolutionary dynamics have been concerned with direct trophic interactions. However, community ecologists have shown that trait-mediated indirect effects play an important role in shaping the structure of natural communities. In particular, in terrestrial plant–insect systems, indirect effects mediated through herbivore-induced plant responses are common and have a great impact on the structure of herbivore communities. This review describes eco-evolutionary dynamics in herbivorous insect communities, and specifically focuses on the key role of herbivore-induced plant responses in eco-evolutionary dynamics. First, I review studies on the evolution of herbivore traits relevant to plant induction and discuss evolution in a community context mediated by induced plant responses. Second, I highlight how intraspecific genetic variation or evolution in herbivore traits can influence herbivore community structure. Finally, I propose the hypothetical model that induced plant responses supports eco-evolutionary feedback in herbivore communities. In this review, I argue that the application of the indirect interaction web approaches into studies on eco-evolutionary will provide profound insights into understanding of mechanisms of the generation and maintenance of biodiversity.  相似文献   

11.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

12.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

13.
14.
Drought events are predicted to increase due to climate change, yet consequences for plant–insect interactions are only partially understood. Drought‐mediated interactions between herbivores and their host plants are affected by a combination of factors, including characteristics of the affected plant, its associated herbivore and of the prevailing drought. Studying the effect of these factors in combination may provide important insight into plant and herbivore responses to drought. We studied drought effects on plant resistance to two leaf‐chewing herbivores by considering differing growth conditions, plant chemistry and insect responses in concert. We exposed Alliaria petiolata plants from several wild populations to different intensities of intermittent drought stress and quantified drought‐mediated changes in plant chemistry. Simultaneously, we assessed behavior (feeding preference) and performance of two lepidopteran herbivores: Pieris brassicae, a specialist, and Spodoptera littoralis, a generalist. Drought led to lowest concentrations of secondary defense compounds in severely stressed plants, without affecting total nitrogen content. Additionally, drought evoked opposite patterns in feeding preferences (plant palatability) between the herbivore species. Pieris brassicae consumed most of well‐watered plants, while S. littoralis preferred severely drought‐stressed plants. Hence, feeding preferences of S. littoralis reflected changes in plant secondary chemistry. Contrary to their feeding preference, P. brassicae performed better on drought‐stressed than on well‐watered plants, with faster development and higher attained pupal mass (plant suitability). Spodoptera littoralis showed retarded development in all treatments. In conclusion, drought caused plant secondary defense compounds to decrease consistently across all studied plant populations, which evoked contrasting feeding preferences of two herbivore species of the same feeding guild. These results suggest herbivore specificity as a possible explanation for herbivore responses to drought and emphasize the importance of herbivore characteristics such as feeding specialization in understanding and predicting consequences of future drought events.  相似文献   

15.
We studied the effects of elevated ultraviolet-B radiation on interactions between insect herbivores and their host plants by exposing two species of phytochemically different willows, Salix myrsinifolia and S. phylicifolia, to a modulated increase in ultraviolet radiation in an outdoor experiment and monitoring the colonisation of insect herbivores on these willows. We examined the effect of increased ultraviolet-B (UV-B) radiation on (1) the quality of willow leaves, (2) the distribution and abundance of insect herbivores feeding on these willows, (3) the resulting amount of damage, and (4) the performance of insect larvae feeding on the exposed plant tissue. Six clones of each of the two willow species were grown in eight blocks for 12 weeks in the UV-B irradiation field. The clones were exposed to a constant 50% increase in UV-B radiation (simulating 20-25% ozone depletion), to a small increase in UV-A radiation or to ambient solar irradiation. We allowed colonisation on the willows by naturally occurring insects, but also introduced adults of a leaf beetle, Phratora vitellinae, a specialist herbivore on S. myrsinifolia. Increased UV-B radiation did not affect any of the measured indices of plant quality. However, numbers of P. vitellinae on S. myrsinifolia were higher in plants with UV-B treatment compared with UV-A and shade controls. In laboratory tests, growth of the second-instar larva of P. vitellinae was not affected by UV-B treatment of S. myrsinifolia, but was retarded on UV-B treated leaves of S. phylicifolia. In addition, naturally occurring insect herbivores were more abundant on willows exposed to elevated UV-B radiation compared to those grown under control treatments. In spite of the increased abundance of insect herbivores, willows treated with elevated UV-B did not suffer more herbivore damage than willows exposed to ambient solar radiation (shade control). The observed effects of UV-B on herbivore abundance, feeding and growth varied significantly due to spatial variation in environment quality, as indicated by the UV-treatment x block interaction. The results suggest that (1) environmental variation modifies the effects of UV-B radiation on plant-insect interactions and (2) specialist herbivores might be more sensitive to chemical changes in their secondary host plants (S. phylicifolia) than to changes in their primary hosts (S. myrsinifolia).  相似文献   

16.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

17.
Above‐ and belowground herbivores promote plant diversity when selectively feeding on dominant plant species, but little is known about their combined effects. Using a model system, we show that neutral effects of an aboveground herbivore and positive effects of a belowground herbivore on plant diversity became profoundly negative when adding these herbivores in combination. The non‐additive effects were explained by differences in plant preference between the aboveground‐ and the belowground herbivores and their consequences for indirect interactions among plant species. Simultaneous exposure to aboveground‐ and belowground herbivores led to plant communities being dominated by a few highly abundant species. As above‐ and belowground invertebrate herbivores generally differ in their mobility and local distribution patterns, our results strongly suggest that aboveground–belowground interactions contribute to local spatial heterogeneity of diversity patterns within plant communities.  相似文献   

18.
Beneficial soil‐borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col‐0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant‐mediated interaction between the non‐pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore‐induced plant volatiles. The volatile blend from rhizobacteria‐treated aphid‐infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid‐infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore‐induced volatiles and parasitoid response to aphid‐infested plants is lost in an Arabidopsis mutant (aos/dde2‐2) that is impaired in jasmonic acid production. By modifying the blend of herbivore‐induced plant volatiles that depend on the jasmonic acid‐signalling pathway, root‐colonizing microbes interfere with the attraction of parasitoids of leaf herbivores.  相似文献   

19.
1. The aphid Uroleucon nigrotuberculatum Olive, which is specialised to the tall goldenrod, Solidago altissima L., in its native range, has become a dominant species on the introduced tall goldenrod in Japan. How this exotic aphid influenced arthropod communities on the introduced tall goldenrod in aphid‐present (spring) and aphid‐absent (autumn) seasons was examined, using an aphid removal experiment. 2. In spring, aphid presence increased ant abundance because aphid honeydew attracted foraging ant workers. A significant negative correlation was found between the numbers of ants and herbivorous insects other than aphids on the aphid‐exposed plants, but no significant correlation was detected on the aphid‐free plants. Thus, the aphid presence was likely to decrease the abundance of co‐occurring herbivorous insects through removal behaviour of the aphid‐tending ants. There were no significant differences in plant traits between the aphid‐exposed and aphid‐free plants. 3. In autumn, the numbers of lateral shoots and leaves, and the leaf nitrogen content were increased in response to the aphid infestation in spring. Because of the improvement of plant traits by aphid feeding, the abundance of leaf chewers increased on aphid‐exposed plants. In contrast, the abundance of sap feeders decreased on the aphid‐exposed plants. In particular, the dominant scale insect among sap feeders, Parasaissetia nigra Nietner, decreased, followed by a decrease in the abundance of ants attending P. nigra. Thus, aphid feeding may have attenuated the negative impacts of the tending ants on leaf chewers. 4. Aphid presence did not change herbivore species richness but changed the relative density of dominant herbivores, resulting in community‐wide effects on co‐occurring herbivores through ant‐mediated indirect effects, and on temporally separated herbivores through plant‐ and ant‐mediated indirect effects. The aphid also altered predator community composition by increasing and decreasing the relative abundance of aphid‐tending ants in the spring and autumn, respectively.  相似文献   

20.
1. Host plant phenotypic traits affect the structure of the associated consumer community and mediate species interactions. Intraspecific variation in host traits is well documented, although a functional understanding of variable traits that drive herbivore community response is lacking. We address this gap by modelling the trait-environment relationship using insect traits and host plant traits in a multilevel model. 2. We compare herbivore assemblages from the canopy of the phenotypically variable tree Metrosideros polymorpha on Hawai‘i Island. Multiple distinct varieties of M. polymorpha frequently co-occur, with variation in morphological traits. Using this system, we identify host and insect traits that underlie patterns of herbivore abundance and quantify the strength of host-insect trait interactions. 3. This work examines plant-insect interactions at a community scale, across 36 herbivore species in three orders. We find that co-occurring trees of varying phenotype support distinct communities. Leaf traits, including specific leaf area, trichome presence, and leaf nutrients, explain 46% of variation in insect communities. We find that feeding guild and nymphal life history are correlated with host plant traits, and we show that model predictions are improved by including the host and insect trait interaction. 4. This study demonstrates how insect herbivores traits influence community response to morphologically variable hosts. Environmental heterogeneity indirectly affected herbivore community structure via intraspecific variation in host plants, providing an important source of variation for maintaining diversity in the broader community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号