首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iso-accepting forms of tRNAmet, tRNAleu, tRNAlys, and tRNAtyr were isolated from combined walls and septa of tomato fruits at 5 consecutive stages of ethylene induced ripening. Changes in the relative amount of some tRNAleu and tRNAlys were discerned 10hr after exposure to ethylene. Individual patterns of change for each of several iso-acceptor tRNAs were evident throughout the ripening sequence. Maximal changes were: tRNAlys, ?66.3%; tRNAleu, ?24.8%; and tRNAmet, +26.7%.  相似文献   

2.
Biggs, M. S., Woodson, W. R. and Handa, A. K. 1988. Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiol. Plant. 72: 572578
Incubation of fruits of tomato ( Lycopersicon esculentum Mill. cv. Rutgers) at 34°C or above resulted in a marked decrease in ripening-associated ethylene production. High temperature inhibition of ethylene biosynthesis was not associated with permanent tissue damage, since ethylene production recovered following transfer of fruits to a permissive temperature. Determination of pericarp enzyme activities involved in ethylene biosynthesis following transfer of fruits from 25°C to 35 or 40°C revealed that 1-aminocyclopropane-l-carboxylic acid (ACC) synthase (EC 4.4.1.14) activity declined rapidly while ethylene forming enzyme (EFE) activity declined slowly. Removal of high temperature stress resulted in more rapid recovery of ACC synthase activity relative to EFE activity. Levels of ACC in pericarp tissue reflected the activity of ACC synthase before, during, and after heat stress. Recovery of ethylene production following transfer of pericarp discs from high to permissive temperature was inhibited in the presence of cycloheximide, indicating the necessity for protein synthesis. Ethylene production by wounded tomato pericarp tissue was not as inhibited by high temperature as ripening-associated ethylene production by whole fruits.  相似文献   

3.
4.
Effect of diazocyclopentadiene on tomato ripening   总被引:2,自引:0,他引:2  
Diazocyclopentadiene (DACP) in the presence of fluorescent light delayed ripening of tomato fruits treated at the mature green (no visible red) stage. At 25 °C, ripening was delayed 10 days if DACP [185 µl/1 (gas)] was added as a single treatment and longer if DACP was added intermittently at 5-day intervals. The addition of 1000 µl/1 ethylene following DACP and light treatment did not hasten ripening. Little ripening delay was noted for fruit + DACP held in darkness. Tomatoes covered with aluminum foil so as to exclude light but not light-activated DACP, showed ripening inhibition. Apparently, the light-activated product from DACP is stable long enough to diffuse into fruit held in darkness. After an initial inhibition, ethylene production was greatly increased in tomatoes treated with DACP. Tomatoes with or without DACP treatment were held either in air or 5% O2/95% N2 for 12 days then treated with ethylene. Treatment with 5% O2 alone delayed ripening when compared to air alone, however, both groups reached 80% red color by 18 days. DACP treated fruit, whether held in air or 5% O2, still were green after 18 days and only approached 80% red color after approximately 27 days. Thus, 5% oxygen did not appear to slow the reversal of DACP inhibition of ripening.  相似文献   

5.
6.
7.
8.
9.
10.
The activities of four mitochondrial enzymes were studied in four stages of ripening tomato fruit. The highest enzyme activity was recorded for malate dehydrogenase followed by cytochrome c oxidase. Succinate dehydrogenase and NADH oxidase levels were low and could only be determined in the green stage of the fruit. However, peaks of various enzyme activities coincided in identical mitochondrial fractions on the sucrose density gradient. Moreover, the levels of malate dehydrogenase and cytochrome c oxidase were constant during the ripening process while the other two enzymes, succinate dehydrogenase and NADH oxidase, declined. This might indicate that mitochondria retain some of their essential functions through the ripening process.  相似文献   

11.
12.
In vitro translation of mRNAs and polyacrylamide gel electrophoresis of proteins from melons revealed that several mRNAs increased in amount during ripening, indicating the existence of other ripening genes in addition to those cloned previously. To identify ripening-related genes we have screened a ripe melon cDNA library and isolated two novel cDNA clones (MEL2 and MEL7) encoding unidentified proteins. Southern analysis revealed that MEL2 and MEL7 are encoded by low-copy-number genes. The MEL2 cDNA clone is near full-length, corresponds to a 1600 nucleotide mRNA that accumulates during ripening and encodes a predicted protein rich in hydrophobic amino acids. The MEL7 cDNA clone is full-length, corresponds to a mRNA of 0.7 kb which accumulates during early ripening stages and is also present at low levels in other organs of the melon plant. The MEL7 predicted polypeptide is 17 kDa and shows significant homology with the major latex protein from opium-poppy. Wounding and ethylene treatment of unripe melon fruits 20 days after anthesis showed that MEL2 and MEL7 mRNAs are only induced by ethylene.  相似文献   

13.
14.
The amount of tomato fruit β-fructofuranosidase extractable from the cell walls during ripening parallelled the changes in activity of the enzyme. Using the techniques of radioimmunoassay, double immunodiffusion analysis and immunotitration, no differences in immunological properties of β-fructofuranosidase between the various stages of fruit ripening were detected.  相似文献   

15.
The lipid composition of tomato fruit and its mitochondrial fraction were examined at various stages of fruit ripeness. Phosphatidyl choline, phosphatidyl ethanolamine, monogalactosyl diglyceride, digalactosyl diglyceride and phosphatidyl inositol were found to be the major lipids of tomato pericarp at all stages of ripeness. Mitochondrial lipids resembled those of the parent tissue except for the absence of monogalactosyl diglyceride and a greater percentage of diphosphatidyl glycerol and phosphatidic acid. Changes in the lipid-protein ratio of mitochondria were noted with ripening.  相似文献   

16.
Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit‐ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild‐type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation‐related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd‐mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35SySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole‐plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post‐harvest senescence and decay.  相似文献   

17.
Ethylene regulation of fruit ripening: Molecular aspects   总被引:19,自引:0,他引:19  
Progress in ethylene regulating fruit ripening concerning itsperception and signal transduction and expression of ACC synthaseand ACC oxidase genes is reviewed. ACC synthase and ACC oxidasehave been characterized and their genes cloned from various fruittissues. Both ACC synthase and ACC oxidase are encoded bymultigene families, and their activities are associated withfruit ripening. In climacteric fruit, the transition toautocatalytic ethylene production appears to be due to a seriesof events in which ACC sythase and ACC oxidase genes have beenexpressed developmentally. Differential expression of ACCsynthase and ACC oxidase gene family members is probably involvedin such a transition that ultimately controls the onset of fruitripening.In comparison to ACC synthase and ACC oxidase, less is knownabout ethylene perception and signal transduction because of thedifficulties in isolating and purifying ethylene receptors orethylene-binding proteins using biochemical methods. However, theidentification of the Nr tomato ripening mutant as anethylene receptor, the applications of new potent anti-ethylenecompounds and the generation of transgenic fruits with reducedethylene production have provided evidence that ethylenereceptors regulate a defined set of genes which are expressedduring fruit ripening. The properties and functions of ethylenereceptors, such as ETR1, are being elucidated.Application of molecular genetics, in combination withbiochemical approaches, will enable us to better understand theindividual steps leading from ethylene perception and signaltransduction and expression of ACC synthase and ACC oxidase genefamily member to the physiological responses.  相似文献   

18.
陆旺金  张昭其 《生命科学》1999,11(3):132-134
对延缓番茄果实成熟的热处理、反义RNA技术及气调技术(高CO2/低O2,100%N2)等方法进行了阐述,并从分子水平上(包括与乙烯生成有关及无关的蛋白质的合成、基因表达等方面)探讨了这些方法延缓果实成熟的机理。  相似文献   

19.
果实成熟过程相关调控基因研究进展   总被引:10,自引:2,他引:8  
果实成熟过程中,多聚半乳糖醛酸酶(PG)参与果胶的分解,从而在果实软化中起作用,新近发现,果实软化过程中,协同展蛋白具有一定的作用:ACC合成酶(ACS)、ACC氧化酶(ACO)和ACC脱氨酶与乙烯合成直接有关,ACS是乙烯形成的关键酶,由多基因家族编码,各个基因协同表达,每一基因都有自己的转录特性,新近不断发现果实中ACS基因家族中的新成员;ACO是一种与膜结合的酶,这种酶具有结构上的立体专一性  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号