首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Industrial wind energy production is a relatively new phenomenon in the Prairie Pothole Region and given the predicted future development, it has the potential to affect large land areas. The effects of wind energy development on breeding duck pair use of wetlands in proximity to wind turbines were unknown. During springs 2008–2010, we conducted surveys of breeding duck pairs for 5 species of dabbling ducks in 2 wind energy production sites (wind) and 2 paired reference sites (reference) without wind energy development located in the Missouri Coteau of North Dakota and South Dakota, USA. We conducted 10,338 wetland visits and observed 15,760 breeding duck pairs. Estimated densities of duck pairs on wetlands in wind sites were lower for 26 of 30 site, species, and year combinations and of these 16 had 95% credible intervals that did not overlap zero and resulted in a 4–56% reduction in breeding pairs. The negative median displacement observed in this study (21%) may influence the prioritization of grassland and wetland resources for conservation when existing decision support tools based on breeding-pair density are used. However, for the 2 wind study sites, priority was not reduced. We were unable to directly assess the potential for cumulative impacts and recommend long-term, large-scale waterfowl studies to reduce the uncertainty related to effects of broad-scale wind energy development on both abundance and demographic rates of breeding duck populations. In addition, continued dialogue between waterfowl conservation groups and wind energy developers is necessary to develop conservation strategies to mitigate potential negative effects of wind energy development on duck populations. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
    
Grassland managers often regard woody vegetation as hostile habitat that potentially reduces the abundance and fecundity of wildlife that use grasslands. We tested that assumption for waterfowl by examining patterns of nest success on study areas that differed in current extent and previous management of woody vegetation. We located and monitored 1,064 waterfowl nests on 33 federally owned Waterfowl Production Areas (WPAs) in western Minnesota during 2008–2010. Sites contained 0.3–15.1% woodland and also varied markedly in extent of shrubs and scattered trees. Average nest success was low (12.9%), but ranged from 1.5% to 38.7% among site-years. Nests were more likely to succeed when located in landscapes containing more grass (500-m scale) and fewer wetlands (100-m scale), but none of 8 variables measuring woody vegetation were negatively associated with nest survival and 1 variable (abundance of lone trees) was positively associated with nest survival. Our results indicate that management efforts focusing on removing woody vegetation are unlikely to provide improvements in nest survival rates for breeding waterfowl, except to the extent that such management is necessary to maintain large tracts of grassland. © 2012 The Wildlife Society.  相似文献   

3.
    
Abstract: Few studies have estimated reproductive and survival parameters of breeding ducks simultaneously, although such efforts can reveal relationships among vital rates. We estimated survival of mallard (Anas platyrhynchos) nests and duckling on 8 study sites in south-central Saskatchewan during spring and summer 2000 and 2001. We observed a strong positive correlation between these parameters (r = 0.914) and through analysis of residual values found 14% of the relationship was explained by a predator-removal treatment, 26% by year effects, 44% by spatial variation, and 16% unexplained. Potential mechanisms include similar environmental factors influencing both parameters (e.g., predators) and positive density dependence. Information regarding covariation among vital rates is important in construction and interpretation of population growth models describing population dynamics of mallards and other upland-nesting ducks.  相似文献   

4.
    
Despite recent work, uncertainty remains concerning how abiotic and biotic factors affect duckling survival. Additionally, upland habitat characteristics may affect duckling survival rates but this potential relationship has largely been ignored. We evaluated several unresolved hypotheses about causes of mallard (Anas platyrhynchos) duckling survival variation, with an emphasis on assessing effects of managed and remnant natural upland habitats. During 1993–2000, 617 radio-marked females provided information about brood habitat use and duckling survival on 27 sites in prairie Canada. We contrasted a priori and exploratory models that incorporated effects of upland, wetland, weather, female, and brood-related variables on duckling survival rates. Survival was highest for ducklings when a greater proportion of their surrounding landscape (i.e., within a 500-m radius buffer around the brood) was comprised of wetlands characterized by a central expanse of open water and a peripheral ring of flooded emergent vegetation. Cold and wet weather in the first week of life resulted in lower duckling survival. In a post hoc analysis, duckling survival (of older ducklings) was negatively related to increasing proportions of managed hayland. © 2011 The Wildlife Society.  相似文献   

5.
    
Assumptions about breeding site fidelity (i.e., fidelity) in blue-winged teal (Spatula discors) are based on limited recapture data and analytic techniques. We banded female blue-winged teal (n = 12,543) from 2003 to 2014 in a 3,800-ha sample area in north-central South Dakota, USA, and used a Bayesian hierarchical modeling approach combining live recapture and dead recovery data to predict probabilities of fidelity, survival, recapture, and reporting. We explored sources of variation including time, annual wet area on the landscape, age, and nest survival, and compared our results to other dabbling ducks that nest in the Prairie Pothole Region, a critically important breeding area for waterfowl in central North America. We found annual estimates of fidelity ranging from 0.20 to 0.91, with mean values of 0.62 and 0.67 for hatch year birds and after hatch year birds, respectively. Our findings indicate that environmental factors may cause blue-winged teal to return to breeding sites more frequently than previously assumed. © The Wildlife Society, 2019  相似文献   

6.
7.
North Carolina, USA, represents the southern extent of the American black duck's (Anas rubripes) breeding range. Mallards (A. platyrhynchos) are present on the breeding grounds of the American black duck and hybridization is observed between these species; therefore, we assessed the genetic integrity, hybridization rates, and population structure of this local breeding population. We extracted genomic and mitochondrial DNA from chorioallantoic membranes and contour feathers from monitored black duck nests. We then prepared the extracted DNA for analysis using high-throughput DNA sequencing methods (ddRAD-seq). First, we assessed nuclear and mitochondrial population structure, genetic diversity, and differentiation across samples from North Carolina, and compared them against 199 genetically vetted mallards, black ducks, and mallard × black duck hybrids that served as genetic references. Next, we tested for parentage and sibling relationship and overall relatedness of black ducks in North Carolina. We recovered strong population structure and high co-ancestry across genetic markers due to interrelatedness among sampled nests in North Carolina and concluded that black ducks have been locally breeding in this area for a prolonged period of time. Despite a high level of interrelatedness among our samples, nucleotide diversity was similar to the reference continental black duck population, suggesting little effect of genetic drift, including inbreeding. Additionally, we conclude that molecular diversity of black ducks in North Carolina is maintained at reference population levels through the influx of genetic material from unrelated, migrating male black ducks. Finally, we report a hybridization level of 47.5%, covering 3 filial generations. Of identified hybrids, 54.7% and 53% were the direct result of interbreeding between black ducks and captive-reared or wild mallards, respectively. We conclude that because of high rates of interspecific hybridization and successive backcrossing events, introgression from wild and feral mallards is occurring into this population of breeding black ducks and requires careful consideration in future management efforts. © 2021 The Wildlife Society.  相似文献   

8.
    
Abstract: Habitat provides food and shelter resources for prefledgling waterfowl and thus plays a critical role in their growth, development, and survival. However, few studies have examined whether and how particular elements of habitat affect duckling survival. We investigated relationships of duckling survival rates with distance of overland travel, wetland vegetation composition, water permanency, and surrounding upland vegetation for 116 mallard (Anas platyrhynchos) broods in the Great Lakes region from 2001 to 2003. We found that the probability, on hatch day, that a mallard duckling will survive to 55 days was positively related to the proportion of wetland area that was vegetated and negatively related to the proportion of forest cover within 500 m of duckling locations. We found little support for relationships between duckling survival rates and the proportions of grasslands or seasonal wetlands or to distances traveled overland by broods. Our results suggest that conservation groups and wildlife managers in the Great Lakes region can improve mallard duckling survival rates by managing for, creating, and protecting vegetated wetlands and focusing efforts within lightly-forested areas.  相似文献   

9.
    
Climate change is expected to lead to greater temporal climatic variability across broad spatial extents. A potential consequence is that shifts in climatic conditions might alter how local habitat affects the population growth of animals dependent on those habitats for at least part of their life cycle. We tested whether such a phenomenon occurred when the North American Prairie Pothole Region transitioned through periods of wet and dry conditions by modeling the population growth of seven duck species over 52 years (1961–2012). We found that the influence of local habitat quality—indexed by wetland availability—on duck population growth varied in magnitude and direction on an annual basis. While the effect of wetlands was relatively small in most years, there were some years in which wetlands strongly affected duck population growth in both positive and negative directions (e.g., negative in 2002 and positive in 2008). Contrary to our expectation, inter-annual variability in the effect of wetlands on duck population growth did not depend on regional precipitation. We also found that for two species—American Wigeon (Anas americana) and Green-winged Teal (A. carolinensis)—duck population growth in the presence of wetlands rarely differed from what would be expected solely under density dependence. Our study is the first to demonstrate that the effect of local habitat on population growth varies over time even if the cause of that variation remains unexplained. Consequently, any study that attempts to identify a species’ critical habitat using time series abundance data must consider that local relationships are non-stationary. More complicated measures of climate change may reveal how local drivers of population growth depend on broader temporal climatic patterns.  相似文献   

10.
    
ABSTRACT The influence of habitat, waterfowl abundance, and hunting on winter survival of waterfowl is not well understood. We studied late August-March survival of 163 after-hatch-year (AHY) and 128 hatch-year (HY) female mallards (Anas platyrhynchos) radiotagged in Sacramento Valley (SACV) and 885 AHY female northern pintails (A. acuta) radiotagged throughout the Central Valley of California, USA, relative to flooded habitat (HAB), January abundance of each species (JMAL or JPIN), hunter-days (HDY), and a hunting pressure index (HPI) that combined these variables. From EARLY (1987–1994) to LATE (1998–2000), HAB increased 39%, JPIN increased 45%, JMAL increased 53%, HDY increased 21%, duck-hunting season increased from 59 days to 100 days, and the female daily bag limit doubled to 2 for mallards but remained 1 for pintails. Survival (± SE) was greater during LATE versus EARLY for pintails radiotagged in each region (SACV: 93.2 ± 2.1% vs. 87.6 ± 3.0%; Suisun Marsh: 86.6 ± 3.2% vs. 77.0 ± 3.7%; San Joaquin Valley: 86.6 ± 3.1% vs. 76.9 ± 4.1%) but not for SACV mallards (AHY: 70.6 ± 7.2% to 74.4 ± 7.7% vs. 80.1 ± 7.2% to 82.8 ± 5.6%; HY: 48.7 ± 9.1% [1999–2000 only] vs. 63.5 ± 8.8% to 67.6 ± 8.0%). Most pintail (72%) and mallard (91%) deaths were from hunting, and lower HPI and higher JPIN or JMAL were associated with reduced mortality. Increased HAB was associated with reduced winter mortality for pintails but not for SACV mallards. Pintail survival rates that we measured were within the range reported for other North American wintering areas, and during LATE were higher than most, even though our study duration was 68–110 days longer. Winter survival rates of SACV mallards were also within the reported range. However, with higher bag limits and longer seasons, mallard survival during LATE was lower than in most other wintering areas, especially during 1999–2000, when high winds on opening weekend resulted in high hunting mortality. Habitat conservation and favorable agriculture practices helped create a Central Valley wintering environment where natural mortality of mallards and pintails was low and survival varied with hunting mortality. We recommend regulations and habitat management that continue to minimize natural mortality while allowing sustainable harvest at a level that helps maintain strong incentive for management of Central Valley waterfowl habitats, including the large portion that is privately owned.  相似文献   

11.
12.
    
Duckling survival is an important component of mallard (Anas platyrhynchos) recruitment and population growth, yet many factors regulating duckling survival are poorly understood. We investigated factors affecting mallard duckling survival in the drift prairie of northeastern North Dakota, 2006–2007. Mammalian meso-predators were removed by trapping on 4 92.3 km2 study sites and another 4 study sites served as controls. We monitored 169 broods using telemetry and periodic resighting, and we modeled cumulative survival to 30 days of age using the nest survival module in Program MARK. Duckling survival was not affected by predator removal ( , 85% CI: 0.182–0.234; , 85% CI: 0.155–0.211) and was only weakly negatively correlated with duckling density. Duckling survival was higher in 2007 ( , 85% CI: 0.193–0.355) than 2006 ( , 85% CI: 0.084–0.252) and increased with total seasonal and semipermanent wetland area and declined with perennial cover in the surrounding landscape. Broods that hatched earlier in the season (especially in 2006) and ducklings that were heavier at hatch also had higher survival. Our estimates of duckling survival are among the lowest reported for mallards and contradict previous research in Saskatchewan that found predator removal increased duckling survival. However, our results are consistent with other studies suggesting that earlier hatch date, increased wetland availability, and better duckling condition lead to increased survival. Management actions that increase wetland density, improve nest success early in the season, and potentially target brood-specific predators such as mink (Neovison vison) would likely lead to higher duckling survival. © 2011 The Wildlife Society.  相似文献   

13.
14.
    
In 1994, Delta Waterfowl Foundation began trapping mammalian meso-predators in North Dakota during the breeding season in an attempt to increase waterfowl nest success and enhance recruitment into the fall flight and subsequent breeding population. Multiple studies on these sites demonstrated that removing predators results in near doubling of nest success, which previous simulation modeling suggests is the most influential vital rate influencing the population growth rate of mid-continent mallards (Anas platyrhynchos). We present an assessment of the impact of predator removal on mallard production using population models. We conducted this study on 9 township-sized (93.2 km2) sites (4–8 sites annually per vital rate) in northeastern North Dakota from 2006–2008. Trappers removed mammalian meso-predators on 5 sites and the other 4 served as unmanaged reference sites. To estimate recruitment, we used derived estimates and process variance of pair numbers, hen success (nest survival corrected for renesting), initial brood size, pre-fledging survival, and post-fledging survival, along with previously published estimates of breeding propensity and adult female survival rates. Trapped sites had greater hen success (H = 0.69, = 0.03) than reference sites (H = 0.53, = 0.06), but similar indicated breeding pairs, initial brood size, and pre-fledging survival. We estimated that females on trapped sites added 140 more mallards of both sexes to the fall flight than females on reference sites, at an approximate cost of $74.29 per incremental mallard. Additionally, trapping predators provided a marginal increase (0.04) in finite population growth. We found that predator removal targeted at mammalian nest predators did not produce as many incremental mallards as previously thought and may not be a viable strategy for increasing mallard productivity under conditions similar to those observed during this study. We conducted a sensitivity analysis and determined that pre-fledging survival was the most influential factor regulating mallard population growth. Although hen success increased as a result of trapping, duckling survival became a limiting factor. We suggest that waterfowl managers assess multiple vital rates to determine the likelihood that management actions focused on a single parameter, such as nest success, will yield desired population level effects. © 2012 The Wildlife Society.  相似文献   

15.
16.
17.
    
ABSTRACT Dense nesting cover (DNC) has been a conspicuous component of habitat management for upland-nesting ducks for >30 years, but its benefits for nesting ducks have been contentious. During 1994–1999 we monitored 3,058 dabbling duck (Anas spp.) nests in 84 DNC fields located throughout the Canadian Parklands to examine sources of among-field variation in nest density and nesting success. Nest density averaged 1.51 (SE=0.15) nests/ha and overall nesting success was 20.4%, but there was pronounced annual variation in both estimates. Nesting success increased with increasing field size (range = 6–111 ha), but nest density remained constant. Nest density increased with percent wetland habitat within DNC fields and declined with percent perennial cover in the surrounding 2.4 × 2.4-km landscape, but these variables were not important for predicting nesting success. Nest abundance and nesting success roughly doubled in fields seeded with alfalfa (Medicago sativa) or sweet clovers (Melilotus spp.), but there was no benefit from using native as opposed to tame grasses. We recommend that waterfowl managers in the Canadian Parklands establish DNC with alfalfa in large fields in landscapes with abundant wetlands but minimal competing cover.  相似文献   

18.
    
Conservation plans designed to sustain North American duck populations prominently feature a key hypothesis stating that the amount of the landscape in perennial cover surrounding upland duck nests positively influences nest survival rates. Recent conflicting research testing this hypothesis creates ambiguity regarding which management actions to pursue and where to prioritize conservation delivery. We compared existing models and new formulations of existing models explaining spatiotemporal variation in nest survival using independent data documenting the fate of >20,000 duck nests within the Drift Prairie, Missouri Coteau, and Prairie Coteau physiographic regions of the United States Prairie Pothole Region during 2002–2018. Our results suggest an inconsistent relationship between perennial cover and survival of upland duck nests, which depended upon physiographic region and current and time-lagged landscape and environmental conditions. The magnitude and direction of how perennial cover correlated with daily nest survival depended on its dominance as a landcover type. A positive relationship existed when perennial cover was a minor component of landcover in all physiographic regions (<30% of a 10.4-km2 area) and, in the Drift Prairie and Prairie Coteau, when perennial cover was the dominant landcover type (>60%). A constant or negative relationship was predicted at locations of about 30–60% perennial cover. Additionally, environmental conditions (i.e., density of wetlands and estimated gross primary productivity in the previous year) moderated or enhanced the effect of perennial cover on nest survival, depending on physiographic region. Our finding of inconsistency in the relationship between perennial cover and nest survival contradicts the conservation premise that nest survival universally increases linearly when uplands are converted to perennial cover. Promoting policies and management actions designed to increase perennial cover can be expected to be situationally but not consistently associated with higher survival of upland duck nests.  相似文献   

19.
20.
    
Species conservation requires an understanding of the factors and interactions affecting species distribution and behavior, habitat availability and use, and corresponding vital rates at multiple temporal and spatial scales. Opportunities to investigate these relationships across broad geographic regions are rare. We combined long-term waterfowl population surveys, and studies of habitat use and breeding success, to develop models that identify and incorporate these interactions for upland-nesting waterfowl in the Prairie Pothole Region (PPR) of Canada. Specifically, we used data from the annual Waterfowl Breeding Population and Habitat Survey (1961–2009) at the survey segment level and associated habitat covariates to model and map the long-term average duck density across the Canadian PPR. We analyzed nest location and fate data from approximately 25,000 duck nests found during 3 multi-year nesting studies (1994–2011) to model factors associated with nest survival and habitat selection through the nesting season for the 5 most common upland nesting duck species: mallard (Anas platyrhynchos), gadwall (Mareca strepera), blue-winged teal (Spatula discors), northern shoveler (Spatula clypeata), and northern pintail (Anas acuta). Duck density was highly variable across the Canadian PPR, reflecting positive responses to local wetland area and count, and amounts of cropland and grassland, a regional positive response to latitude, and a negative response to local amounts of tree cover. Nest survival was affected by temporal and spatial variables at multiple scales. Specifically, nest survival demonstrated interactive effects among species, nest initiation date, and nesting cover type and was influenced by relative annual wetness, population density, and surrounding landscape composition at landscape scales, and broad geographic gradients (east-west and north-south). Likewise, species-specific probability of nest habitat selection was influenced by timing of nest initiation, population density, relative annual wetness, herbaceous cover, and tree cover in the surrounding landscape, and location within the Canadian PPR. We combined these models, with estimates of breeding effort (nesting, renesting, and nest attempts) from existing literature, in a stochastic conservation planning model that estimates nest distribution and success given spatiotemporal variation in duck density, habitat availability, and influential covariates. We demonstrate the use of this model by examining various conservation planning scenarios. These models allow estimation of local, landscape, and regional influence of conservation investments and other landscape changes on the productivity of breeding duck populations across the PPR of Canada. These models lay the groundwork for the incorporation of conservation delivery costs for full return-on-investment analyses and scenario analyses of climate, habitat, and land use change in regional and continental population models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号