首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Applied Microbiology and Biotechnology - Haloalkane dehalogenases (HLDs) are environmentally relevant enzymes cleaving a carbon-halogen bond in a wide range of halogenated pollutants. PCR with...  相似文献   

2.
CbpA, the scaffolding protein of Clostridium cellulovorans cellulosomes, possesses one family 3 cellulose binding domain, nine cohesin domains, and four hydrophilic domains (HLDs). Among the three types of domains, the function of the HLDs is still unknown. We proposed previously that the HLDs of CbpA play a role in attaching the cellulosome to the cell surface, since they showed some homology to the surface layer homology domains of EngE. Several recombinant proteins with HLDs (rHLDs) and recombinant EngE (rEngE) were examined to determine their binding to the C. cellulovorans cell wall fraction. Tandemly linked rHLDs showed higher affinity for the cell wall than individual rHLDs showed. EngE was shown to have a higher affinity for cell walls than rHLDs have. C. cellulovorans native cellulosomes were found to have higher affinity for cell walls than rHLDs have. When immunoblot analysis was carried out with the native cellulosome fraction bound to cell wall fragments, the presence of EngE was also confirmed, suggesting that the mechanism anchoring CbpA to the C. cellulovorans cell surface was mediated through EngE and that the HLDs play a secondary role in the attachment of the cellulosome to the cell surface. During a study of the role of HLDs on cellulose degradation, the mini-cellulosome complexes with HLDs degraded cellulose more efficiently than complexes without HLDs degraded cellulose. The rHLDs also showed binding affinity for crystalline cellulose and carboxymethyl cellulose. These results suggest that the CbpA HLDs play a major role and a minor role in C. cellulovorans cellulosomes. The primary role increases cellulose degradation activity by binding the cellulosome complex to the cellulose substrate; secondarily, HLDs aid the binding of the CbpA/cellulosome to the C. cellulovorans cell surface.  相似文献   

3.
Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes'' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization.  相似文献   

4.
Haloalkane dehalogenases (HLDs) are enzymes that catalyze the cleavage of carbon-halogen bonds by a hydrolytic mechanism. Although comparative biochemical analyses have been published, no classification system has been proposed for HLDs, to date, that reconciles their phylogenetic and functional relationships. In the study presented here, we have analyzed all sequences and structures of genuine HLDs and their homologs detectable by database searches. Phylogenetic analyses revealed that the HLD family can be divided into three subfamilies denoted HLD-I, HLD-II, and HLD-III, of which HLD-I and HLD-III are predicted to be sister-groups. A mismatch between the HLD protein tree and the tree of species, as well as the presence of more than one HLD gene in a few genomes, suggest that horizontal gene transfers, and perhaps also multiple gene duplications and losses have been involved in the evolution of this family. Most of the biochemically characterized HLDs are found in the HLD-II subfamily. The dehalogenating activity of two members of the newly identified HLD-III subfamily has only recently been confirmed, in a study motivated by this phylogenetic analysis. A novel type of the catalytic pentad (Asp-His-Asp+Asn-Trp) was predicted for members of the HLD-III subfamily. Calculation of the evolutionary rates and lineage-specific innovations revealed a common conserved core as well as a set of residues that characterizes each HLD subfamily. The N-terminal part of the cap domain is one of the most variable regions within the whole family as well as within individual subfamilies, and serves as a preferential site for the location of relatively long insertions. The highest variability of discrete sites was observed among residues that are structural components of the access channels. Mutations at these sites modify the anatomy of the channels, which are important for the exchange of ligands between the buried active site and the bulk solvent, thus creating a structural basis for the molecular evolution of new substrate specificities. Our analysis sheds light on the evolutionary history of HLDs and provides a structural framework for designing enzymes with new specificities.  相似文献   

5.
Environmental pollutants containing halogenated organic compounds e.g. haloacid, can cause a plethora of health problems. The structural and functional analyses of the gene responsible of their degradation are an important aspect for environmental studies and are important to human well-being. It has been shown that some haloacids are toxic and mutagenic. Microorganisms capable of degrading these haloacids can be found in the natural environment. One of these, a soil-borne Burkholderia mallei posses the ability to grow on monobromoacetate (MBA). This bacterium produces a haloacid dehalogenase that allows the cell to grow on MBA, a highly toxic and mutagenic environmental pollutant. For the structural and functional analysis, a 346 amino acid encoding protein sequence of haloacid dehalogenase is retrieve from NCBI data base. Primary and secondary structure analysis suggested that the high percentage of helices in the structure makes the protein more flexible for folding, which might increase protein interactions. The consensus protein sub-cellular localization predictions suggest that dehalogenase protein is a periplasmic protein 3D2GO server, suggesting that it is mainly employed in metabolic process followed by hydrolase activity and catalytic activity. The tertiary structure of protein was predicted by homology modeling. The result suggests that the protein is an unstable protein which is also an important characteristic of active enzyme enabling them to bind various cofactors and substrate for proper functioning. Validation of 3D structure was done using Ramachandran plot ProsA-web and RMSD score. This predicted information will help in better understanding of mechanism underlying haloacid dehalogenase encoding protein and its evolutionary relationship.  相似文献   

6.
文章研究了Cd2+-B[α]P复合污染对菲律宾蛤仔的急性毒性和鳃丝、消化盲囊解毒代谢酶活力的影响。结果表明:Cd2+对菲律宾蛤仔48、72、96h LC50分别为50.41、24.12、14.68 mg/L,Cd2+-B[α]P对菲律宾蛤仔的联合急性毒性48—96h表现为协同作用。Cd2+、B[α]P单一与复合污染对菲律宾蛤仔鳃丝、消化盲囊谷胱甘肽(GSH)含量、谷胱甘肽硫转移酶(GST)和超氧化物歧化酶(SOD)活力的影响显著(P<0.05),而对照组无显著变化。单一染毒组组织GSH含量在12d内呈峰值变化,分别于1d、3d达到最大值,12d后保持稳定,表现为恢复至对照组水平或被诱导;复合污染处理组组织GSH含量除Cd2++B[α]P(15μg/L+0.01μg/L)处理组在3d内呈峰值变化外,其他处理组均呈逐渐下降趋势,均于12d后稳定,被显著抑制。各染毒处理组组织GST、SOD活力在12d内呈峰值变化,分别于1d、3d达到最大值,12d后各处理组GST、SOD活力趋于稳定,GST活力与对照组无明显差异,而SOD活力明显高于对照组水平。由此可见,菲律宾蛤仔在Cd2+-B[α]P复合胁迫下急性毒性效应明显,组织解毒代谢酶活力表现出明显的时间、剂量效应性,鳃丝、消化盲囊GSH含量和SOD活力可作为菲律宾蛤仔Cd2+-B[α]P复合污染评价的潜在生物标志物。  相似文献   

7.
生物法处理是环境中有机污染物去除的主要途径,具有费用低、环境影响小等特点,其不足之处在于所需处理时间长,尤其当有机污染物难降解时,处理时间长达数十年甚至数百年.胞外活性氧(extracellular reactive oxygen species,EROS)是微生物代谢时产生的一类含氧活性基团,对难降解有机物的生物降解...  相似文献   

8.
Genetically modified plants can serve as an efficient tool for remediation of diverse dangerous pollutants of the environment such as pesticides, heavy metals, explosives and persistent organic compounds. Transgenic lines of Nicotiana tabacum containing bacterial bphC gene from the degradation pathway of polychlorinated biphenyls (PCBs) were tested. The product of the bphC gene – enzyme 2,3-dihydroxybiphenyl-1,2-dioxygenase is responsible for cleaving of the biphenyl ring. The presence of bphC gene in transgenic plants was detected on DNA, RNA and protein level. The expression of the bphC/His gene was verified after purification of the enzyme from plants by affinity chromatography followed by a Western blot and immunochemical assay. The enzyme activity of isolated protein was detected.Efficient transformation of 2,3-DHB by transgenic plants was achieved and the lines also exhibited high production of biomass. The transgenic plants were more tolerant to the commercial PCBs mixture Delor 103 than non-transgenic tobacco. And finally, the higher decrease of total PCB content and especially congener 28 in real contaminated soil from a dumpsite was determined after cultivation of transgenic plant in comparison with non-transgenic tobacco. The substrate specificity of transgenic plants was the same as substrate specificity of BphC enzyme.  相似文献   

9.
The employment of enzymes as catalysts within organic media has traditionally been hampered by the reduced enzymatic activities when compared to catalysis in aqueous solution. Although several complementary hypotheses have provided mechanistic insights into the causes of diminished activity, further development of biocatalysts would greatly benefit from effective chemical strategies (e.g., PEGylation) to ameliorate this event. Herein we explore the effects of altering the solvent composition from aqueous buffer to 1,4-dioxane on structural, dynamical, and catalytic properties of the model enzyme subtilisin Carlsberg (SBc). Furthermore, we also investigate the effects of dissolving the enzyme in 1,4-dioxane through chemical modification with poly(ethylene)-glycol (PEG, M(W) = 20 kDa) on these enzyme properties. In 1,4-dioxane a 10(4)-fold decrease in the enzyme's catalytic activity was observed for the hydrolysis reaction of vinyl butyrate with D(2)O and a 50% decrease in enzyme structural dynamics as evidenced by reduced amide H/D exchange kinetics occurred. Attaching increasing amounts of PEG to the enzyme reversed some of the activity loss. Evaluation of the structural dynamic behavior of the PEGylated enzyme within the organic solvent revealed an increase in structural dynamics at increased PEGylation. Correlation analysis between the catalytic and structural dynamic parameters revealed that the enzyme's catalytic activity and enantioselectivity depended on the changes in protein structural dynamics within 1,4-dioxane. These results demonstrate the importance of protein structural dynamics towards regulating the catalytic behavior of enzymes within organic media.  相似文献   

10.
The content of both inorganic and organic pollutants, in sediment from the Orlík reservoir (Vltava river, Czech Republic), and the main tributaries, was determined to assess the total loads of the pollutants in the upper layer of sediment (0–30 cm), and the potential bioaccessibility and bioavailability of these pollutants. Organic pollutants showed non-hazardous levels of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Elevated phosphorus content indicated the possible eutrophization potential; however, significant correlation of phosphorus with iron and aluminum suggested a high immobilization rate of this element with iron and aluminum cations. Risk elements in the sediment were separated according to their potential environmental risk: (1) cobalt, nickel, copper, lead, vanadium, and chromium showed both low levels and relatively low mobility, i.e. low environmental risk; (2) the arsenic levels were significantly elevated (exceeding the maximum allowable limits for land application of sediment) but its mobility was low; (3) cadmium and zinc exceeded the limits and showed high mobility and bioaccessibility. These two elements also showed high bioavailability for the bivalves Unio tumidus and Anodonta anatina. The results showed differences in pollutant loads in sediment along the lake, and different input of pollutants via the individual tributaries.  相似文献   

11.
Abstract

Enzyme promiscuity can be defined as the capability of enzymes to catalyse side reaction in addition to its main reaction. The side reaction of an enzyme is termed as promiscuous or sometimes as the “darker” side of enzyme cross-reactivity/specificity. This unique property of enzyme allows organisms to adapt under varying environmental conditions. Promiscuous enzymes can modify their catalytic activities with altered substrates and can adjust their catalytic and kinetic mechanisms according to substrate properties. This group of enzymes evolved from ancestral proteins found in primitive organisms like archaea that survive under extreme environmental conditions. Such ancestral proteins possessed the potential to catalyse a wide range of reactions at low levels, hence create families or superfamilies of highly specialized enzymes. Further, some enzymes were identified which have non-catalytic functions in addition to their major catalytic activities. These enzymes are referred to as moonlighting enzymes. The study of these enzymes will provide important information regarding enzyme evolution and will help in optimizing protein engineering applications.  相似文献   

12.
The phytoremediation of soils contaminated with organic pollutants offers a low-cost method for removal of such pollutants. We have attempted to enhance the environmental decontamination functions of plants by introducing appropriate enzymatic activities from microorganisms. In the present study, we introduced an extracellular fungal enzyme, the laccase of Coriolus versicolor, into tobacco plants. One transgenic plant, designated FL4, produced laccase that was secreted into the rhizosphere. FL4 was able to remove 20 mol bisphenol A or pentachlorophenol per gram dry weight. The efficiency of this removal was apparently greater than that of control lines. Our results should stimulate efforts to develop plant-based technologies for the removal of environmental pollutants from contaminated environments.  相似文献   

13.
黄孢原毛平革菌木素降解酶系的研究进展   总被引:4,自引:0,他引:4  
黄孢原毛平革菌木素降解酶系主要由木素过氧化物酶、锰过氧化物酶和乙二醛氧化酶组成。由于该酶系特殊的降解机制,除了木质素,它能降解许多种类的有机污染物,因此在环保方面有巨大的应用前景。本文主要综述了国内外对该酶系的研究进展。  相似文献   

14.
环境问题是21世纪人类面临的最严重的挑战。随着现代工农业飞速发展,生态环境日益恶化,难降解污染物如新兴污染物逐渐显现,已成为制约社会经济可持续发展的重要因素。微生物具有强大的环境修复能力,但是其进化速度远不及新兴污染物出现的速度,亟需应用合成生物学的技术来解决这一难题。在充分认识难降解有机污染物微生物降解(途径)特性的基础上,利用我国丰富的微生物与基因资源,运用合成生物学的手段,定向设计和改造现有降解菌株,构建能够降解一种或多种污染物的工程菌株;同时针对复合型污染,如废水等,在建立典型有机污染物代谢、调控和抗逆相关基因元件的模块库基础上,引入人工菌群等策略,对生物系统进行理性设计和组装,构建典型环境污染物的高效降解菌群,可有效促进我国新兴污染物微生物分解代谢的研究,为环境修复的工程应用提供技术支持。  相似文献   

15.
16.
Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far‐UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry.  相似文献   

17.
Enzymes suspended in organic solvents represent a versatile system for studying the involvement of water in catalytic properties and their flexibility in adapting to different environmental conditions. The extremely halophilic alkaline p-nitrophenylphosphate phosphatase from the archaeon Halobacterium salinarum was solubilized in an organic medium consisting of reversed micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as cosurfactant. Hydrolysis of p-nitrophenylphosphate was nonlinear with time when the enzyme was microinjected into reversed micelles that contained substrate. These data are consistent with a kinetic model in which the enzyme is irreversibly converted from an initial form to a final stable form during the first seconds of the encapsulation process. The model features a rate constant (k) for that transition and separate hydrolysis rates, v(1) and v(2), for the two forms of the enzyme. The enzyme conversion may be governed by the encapsulation process.  相似文献   

18.
We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α‐chymotrypsin with water‐acetone (moderate‐strength H‐bond acceptor) and water‐DMSO (strong H‐bond acceptor) mixtures. There are three concentration regimes for the dried α‐chymotrypsin. α‐Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α‐chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water‐poor acetone is ~80%, compared with that observed after incubation in pure water. This effect is very small for the water‐poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α‐chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α‐chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α‐chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein–water–organic solvent systems.  相似文献   

19.
Proper disposal of waste from poultry industries may be done by thermophilic anaerobic digestion. Particularly, thermophilic fermentation exhibits pivotal advantages. However, not only the accrued waste material (digestate) serves as organic fertilizer but also poses environmental problems when the pollutant release is poorly synchronized with the environmental demand. To minimize environmental risks, additional hyperthermophilic (moderately hyperthermophilic) treatment of animal by‐products is necessary, but concurrent release of pollutants is notably increased. To estimate the quantity and quality of pollutants released, we analyzed various organic compounds as well as 21 metals and tested their genotoxic/mutagenic potential by using the Allium cepa assay and the Ames test. As, Cd, Ni, and W were not detected or had low concentration (0.01–0.47 mg/kg) and were considered of little relevance. Co, Cr, Ni, Pb, and Mo were detected at concentrations up to 5.76 mg/kg. Fe, Mn, Zn, and Cu had the highest concentrations and were accumulated to inhibitory levels. Phenolic compounds were detected in negligible concentrations. We found that approximately 30% of onion root chromosomes were permanently damaged by high heavy metal concentrations released from the digestates. Higher temperatures and longer fermentation times fostered an increased release of pollutants above permissible limits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号