首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Species inhabiting mountain ecosystems are expected to be particularly vulnerable to environmental change, yet information on their basic ecology is often lacking. Knowledge from field-based empirical studies remains essential to refine our understanding of the impact of current habitat alterations and for the consequential development of meaningful conservation management strategies. This study focuses on a poorly investigated and vulnerable mountain bird species in Europe, the Ring Ouzel Turdus torquatus. Our aim was to identify the species’ key ecological requirements during the crucial period of nestling provisioning in the context of environmental change. We radiotracked and observed Alpine Ring Ouzels in a high-density population, investigating their pattern of foraging habitat selection in 2015 and 2017, and evaluated the transferability of these results over a wider geographical range across the SW Swiss Alps. Foraging birds selected, consistently in space and time, short grass swards (< 10 cm) with interspersed patches of accessible and penetrable soils, at intermediate moisture levels (around 40–65% volumetric water content). In Alpine ecosystems, this microhabitat configuration is typically widespread during the spring snowmelt, but extremely seasonal, with a rapid decrease in its availability over the course of the breeding season. This underlines the high vulnerability of the Ring Ouzel to environmental change: an earlier snowmelt could generate a temporal mismatch between the peak of the breeding effort and optimal foraging conditions; however, abandoning grazing activities on semi-wooded Alpine pastures may further decrease foraging habitat suitability through taller and denser grass swards, and subsequent woody vegetation encroachment. This study provides a mechanistic appraisal of the challenges Ring Ouzels will face in the future, as well as initial guidelines for targeted habitat management within timberline ecotones.  相似文献   

2.
The post‐fledging period is a critical life stage for young grassland birds. Habitat selection by recently fledged birds may differ from that of adults and may change as juveniles transition from the care and protection of parents to independence. To describe patterns of habitat selection during these important life stages, we studied habitat use by juvenile Grasshopper Sparrows (Ammodramus savannarum) in a Conservation Reserve Program grassland in Maryland. We used radio‐telemetry to track daily movement patterns of two age classes of Grasshopper Sparrows during the post‐fledging period. Sparrows were classified as either dependent (<32‐d‐old) or independent (≥32‐d‐old). We characterized the vegetation at 780 vegetation plots (390 plots where birds were located and 390 paired random plots). Microhabitats where dependent birds were found had significantly more bare ground, litter, and plant species richness than paired random plots. In addition, dependent birds were found in plots with less bare ground, more warm‐season grass cover, more total vegetation cover, and more forb cover than plots used by independent birds. Plots where independent birds were located also had significantly more bare ground than random plots. Dependent birds are less able to escape from predators because their flight feathers are not fully grown so they may benefit from remaining in areas of greater vegetation cover. However, juveniles transitioning from dependence to independence must forage on their own, possibly explaining their increased use of more open areas where foraging may be easier. To properly manage habitat for grassland birds, management strategies must consider the changing needs of birds during different stages of development. Our results highlight the importance of diverse grassland ecosystems for juvenile grassland birds during the transition to independence.  相似文献   

3.
Although it has long been known that juveniles often have foraging skills inferior to those of adults, it has generally been assumed that animal prey are more difficult to capture than fruit, and thus that juveniles foraging on fruit should be similar to adults in their efficiency. To examine these ideas, we investigated the abilities of juvenile and adult American robins Turdus migratorius to forage for ground invertebrates and fruits of the black cherry tree Prunus serotina. We hypothesized that juveniles, lacking the experience of adults, would not have the skills of adults and therefore would be less proficient invertebrate and fruit foragers. Juveniles captured 69% of invertebrates at which they struck compared with 80% of adults’ strikes that ended in capture. However, juveniles made more strikes than adults, so mean prey capture per minute was the same. Juveniles were also less skilled fruit foragers. Juveniles were twice as likely as adults to fail to pick a cherry (55% of adults’ vs. 28% of juveniles’ attempts ended in success). However, there was no significant difference in the proportion of juveniles and adults that dropped a cherry once it was picked. As a result of their low levels of success, juveniles consumed about half the number of cherries per minute as did adults. Contrary to prior assumptions, skills involved in fruit foraging may not be so easily acquired and many omnivorous species, like the American robin, must learn both invertebrate and fruit foraging skills.  相似文献   

4.
Ring Ouzel Turdus torquatus breeding site occupancy in the Moorfoot Hills, southeast Scotland, was determined during the periods 1952–85 and 1998–2000, and sites were classed as either occupied or deserted during the latter period. Site occupancy during 1998–2000 was related to habitat data derived from a supervised classification of a Landsat 7 satellite image. Breeding sites were more likely to have remained occupied if they were at higher altitudes and had more heather cover within radii of both 200 and 450 m, although these effects became non-significant when spatial autocorrelation was accounted for. Using only topographical variables, potential breeding sites were predicted and the habitat surrounding them was compared with actual breeding sites. Actual breeding sites were more likely to have heather or grass–heather mosaic within 100 m than potential breeding sites, but there were no further habitat differences between actual and potential breeding sites within radii of 200 or 450 m. These results indicate that breeding sites at higher altitudes and with a higher cover of heather were less likely to have been deserted, and that lack of heather may prevent otherwise suitable breeding sites from becoming occupied by Ring Ouzels. More detailed field studies are needed to understand the mechanisms underlying these associations.  相似文献   

5.
1.  In a 1-month outdoor stream channel experiment, we investigated the relative importance of habitat complexity (i.e. cobbled area) and the presence of adult signal crayfish ( Pacifastacus leniusculus ) males on the survival and growth of juveniles.
2.  In treatments with high habitat complexity, more juveniles survived, more were newly moulted and they had a higher specific growth rate (SGR) at the end of the experiment than juveniles in treatments with low habitat complexity. The presence of adult males did not affect survival, moulting stage or growth of the juveniles.
3.  The presence of adult males decreased juvenile activity during night. Juveniles in treatments with low habitat complexity were more active than juveniles in high habitat complexity during both day and night.
4.  There was no difference in total invertebrate biomass between treatments. However, some invertebrate taxa, such as Chironomidae larvae, were affected by habitat complexity or the presence of adult crayfish. Juvenile crayfish in all channels had consumed detritus, algae and Chironomidae larvae and there were no differences in gut contents or stable isotope signals (carbon and nitrogen) between treatments, indicating a similar diet among the juveniles across treatments. However, the biomass of chironomids was significantly higher in channels with adult crayfish present, indicating a decreased consumption of chironomids by juveniles in the presence of adults.
5.  Our results suggest that the recruitment of juvenile crayfish is mostly affected by habitat complexity. The competition for food and shelter and aggressive interactions between the juveniles were most pronounced in low habitat complexity, indicating that habitats with a good access to shelter will enhance recruitment of juvenile crayfish in streams.  相似文献   

6.
The dynamics of microhabitat use by foraging adult and juvenile black surfperch (Embiotocajacksoni Agazzi) were explored. Detailed observations of black surfperch feeding at Santa Catalina Island, California, revealed that adults and young-of-year juveniles co-occurred in the same habitat but used different algal substrata as foraging sites. Juveniles selected invertebrate prey almost exclusively from the surface of foliose algae. The occurrence of young E. jacksoni was highly correlated with that of foliose algae. Adults tended to bite most frequently from turf, a low-growing matrix of plants, colonial animals, and debris covering the rocky substratum. The abundance of adults was negatively correlated with the occurrence of foliose algae. Adults and juveniles showed marked, but different, preferences in their utilization of taxa of algae as foraging substrata. Certain algae (e.g., Zonaria farlowii Setchell & Gardner) were preferred while other taxa (e.g., Sargassum palmeri Grun) were avoided by both age groups. However, most types of algae were preferred by one group but not the other. To test the hypothesis that knowledge of algal substratum composition allows prediction of fish occurrence and foraging behavior in a patch, algal cover on 2 × 2 m2 areas of bottom was manipulated creating plots dominated by turf, Zonaria farlowii, or Sargassum palmeri. Fish occurrence could be accurately predicted on the basis of abundance of foliose algae, but foraging activity of fish was highly dependent on the algal taxon that dominated the patch. Differential prey availabilities among foraging substrata provided some insight into the patterns of foraging patch preferences displayed by adult and juvenile Embiotoca jacksoni.  相似文献   

7.
1. The vertical distribution of Daphnia in stratified lakes strongly depends on the depth profiles of temperature and food resources. However, ecological requirements for these factors are slightly different for juvenile and adult Daphnia. 2. Here, I investigated whether food quality influences the habitat selection of Daphnia pulicaria at night and whether the habitat selection of juvenile and adult D. pulicaria is different. Daphnia were allowed to choose their optimal habitat in large, stratified water columns (plankton towers, Plön) that held either the green alga Scenedesmus obliquus (high quality) in the cold hypolimnion (Hypo‐treatment) or S. obliquus in the warm epi‐ and cold hypolimnion (SCEN‐treatment) or the non‐toxic cyanobacterium Synechococcus elongatus (low quality) in the warm epilimnion and S. obliquus in the cold hypolimnion (SYN treatment). 3. When food (S. obliquus) was present only in the hypolimnion (Hypo‐treatment), juveniles and adults distributed similarly in the water column and spent most of their time in the interface between the warm and the food rich layer. 4. When food was present in the epilimnion and hypolimnion (SCEN‐ and SYN‐treatments), juvenile and adult D. pulicaria moved into the warm and now also food‐rich epilimnion, however, the magnitude of this shift depended on the food type and age class of Daphnia. Adult and juvenile D. pulicaria spent most of their time in the epilimnion when food there was of a high quality (S. obliquus; SCEN‐treatment). However, compared to the juveniles, adult Daphnia spent significantly more time in the colder hypolimnion when epilimnetic food was of a low quality (S. elongatus; SYN‐treament). 5. Therefore, habitat selection of adult D. pulicaria was affected by food quality whereas the habitat selection of juveniles was not. 6. Additional growth and reproduction experiments show that the food quality is likely to be responsible for the different habitat selection of juveniles and adults in the SYN‐treatment. 7. In conclusion, my experiments show that D. pulicaria behaviourally reacts to the quality of its food source.  相似文献   

8.
It is expected that through flexibility in behaviour, flock living birds respond to the asymmetries in resource access derived from dominance relationships. We analysed the microhabitat use of willow tits in winter flocks and assessed possible factors which shape habitat segregation between adults and juveniles in different temperature regimes. When foraging in mild conditions (ambient temperature > 0°C), flocks split up into subgroups with adults foraging in inner parts of trees more often than juveniles. However, no differences were recorded in the vertical position occupied in trees. In harsh conditions (< ? 4°C), flocks re‐united and juveniles further moved to outer parts of trees, increasing horizontal segregation between age classes. In mild conditions, vigilance behaviour was not related to the position of birds in trees, but in harsh conditions, scanning frequency was higher in outer parts of trees only for adults. In mild weather, juvenile position in trees was associated with body size and mass. The foraging microhabitat segregation detected in harsh conditions fits the age‐related hoarding distribution previously described in the same population. This supports the hypothesis that hoarded food is important in determining future foraging habitat use. Adult preference and intraspecific competition for safer or richer inner parts of trees as foraging sites during harsh conditions seems to determine the habitat segregation between adults and juveniles. Furthermore, we suggest that in mild weather, when foraging in the absence of adults, juveniles balance the costs of using a potentially dangerous microhabitat with the benefits of building energetically cheap and large food reserves through hoarding. The expected patterns of microhabitat segregation may differ in parids, depending on whether predation risk or other factors such as food availability are the main factors controlling habitat quality.  相似文献   

9.
Changes in grazing management are believed to be responsible for declines in populations of birds breeding in grassland over the last decades. The relationships between grazing management regimes, vegetation structure and composition and the availability of invertebrate food resources to passerine birds remain poorly understood. In this study, we investigated the foraging site selection of meadow pipits (Anthus pratensis L.) breeding in high intensity sheep-grazed plots or low intensity mixed (i.e. sheep and cattle)-grazed plots. We sampled above-ground invertebrates, measured vegetation height and density and conducted a vegetation survey in areas where meadow pipits were observed to forage and areas that were randomly selected. Birds foraged in areas with a lower vegetation height and density and in areas containing a lower proportion of the dominant, tussock-forming grass species Molinia caerulea. They did not forage in areas with a total higher invertebrate biomass but at areas with preferred vegetation characteristics invertebrate biomass tended to be higher in foraging sites than random sites. The foraging distance of meadow pipits was higher in the intensively grazed plots. Our findings support the hypothesis that resource-independent factors such as food accessibility and forager mobility may determine patch selection and are of more importance as selection criteria than food abundance per se. Food accessibility seems to become an even more important selection criterion under high grazing intensity, where prey abundance and size decrease. In our upland grazing system, a low intensity, mixed grazing regime seems to provide a more suitable combination of sward height, plant diversity, structural heterogeneity and food supply for meadow pipit foraging activity compared to a more intensive grazing regime dominated by sheep.  相似文献   

10.
The ‘ecological risk aversion hypothesis’ [C.H. Janson and C.P. van Schaik, Juvenile Primates, Oxford Univ. Press, New York (1993), pp. 57–74] proposes that the pattern of slow growth characteristic of juvenile primates is a response to ecological risks (predation and starvation) experienced by juveniles. Juveniles are thought to avoid predation risk by positioning themselves near conspecifics, therefore experiencing high levels of feeding competition with older individuals, reduced access to resources and, consequently, high starvation risks during periods of food scarcity. The present study compared the foraging behaviors of juvenile and adult squirrel monkeys, a small neotropical primate characterized by a long juvenile period, to determine how predation and starvation risks affected juvenile behaviors. The study was conducted in Eastern Amazonia, in a seasonal environment. Due to their slow development, small body size and large group sizes, it was expected that juveniles in this species would behave in a manner consistent with the risk aversion hypothesis. However, age differences in foraging efficiency and foraging success were smaller than predicted. There was also no evidence that juveniles sacrificed access to food for predator protection. Adults did not have preferential access to fruit patches and direct competition was rare. Feeding competition for prey, the most common resource in the troop's diet, was negligible. Therefore, the slow growth and long juvenile period of squirrel monkeys do not correspond with evidence of predation or starvation risk, as predicted by the risk aversion hypothesis.  相似文献   

11.
The impact of social factors on the improvement of hunting skills of juvenile marsh harriers during their first autumnal migration were studied in SE Poland. While foraging with adult birds, juveniles performed more dives on prey both in terms of number of trials and rates. Hunting sessions of juveniles were more efficient in the presence of adults than in the absence of adults. Juveniles hunting with adults and other juveniles could select adequate habitat patches in which access to prey is easier. The role of vertical and horizontal transmission of information in the development of hunting skills in juvenile marsh harrier were confirmed because faster development of hunting ability was achieved in the social hunting after the end of their postfledging dependency period.  相似文献   

12.
Abstract Orb web spiders face a dilemma: forage in open habitats and risk predation or forage in closed habitats to minimize risk but at reduced foraging profitability. We tested whether Argiope keyserlingi opts for safer habitats at the expense of foraging success by (i) determining habitat selection indices in open and closed habitats; (ii) marking and releasing individual juvenile, subadult and adults over two 4‐week periods to determine if life‐history stage influences habitat selection; and (iii) determining the biotic and abiotic environmental parameters that relate to A. keyserlingi abundance. We found that A. keyserlingi selected closed habitats. Sedge and anthropogenic structures were selected and trees were avoided. Juveniles were never found in open habitats, most likely because of high postdispersal mortality. Subadults and adults may shift from closed to open habitats while juveniles never shifted habitat. Foliage density, plant height, potential prey abundance, and mantid and bird abundance were correlated with A. keyserlingi abundance, with only bird abundance explaining habitat selection. We measured web capture area, spiral distance (distance between spiral threads) and the number of decoration arms (0, 1, 2, 3 or 4) in the field and did laboratory experiments to test the influence of (i) space and vegetation; (ii) prey abundance; and (iii) web damage, on web architecture. Argiope keyserlingi webs exhibited geometric plasticity by having larger prey capture areas and spiral distances in open habitats. Decoration design did not differ between habitats however. Variation in space availability, air temperature, prey abundance and web damage explained the variations in web architecture. Potential prey size and diversity differed between habitats but prey abundance did not. As large prey may be important for spider survivorship, foraging success appears to be compromised by occupying closed habitats.  相似文献   

13.
Ontogeny of diving and foraging behavior in marine top predators is poorly understood despite its importance in population recruitment. This lack of knowledge is partly due to the difficulties of monitoring juveniles in the wild, which is linked to high mortality early in life. Pinnipeds are good models for studying the development of foraging behaviors because juveniles are large enough to robustly carry tracking devices for many months. Moreover, parental assistance is absent after a juvenile departs for its first foraging trip, minimizing confounding effects of parental input on the development of foraging skills. In this study, we tracked 20 newly weaned juvenile southern elephant seals from Kerguelen Islands for up to 338 days during their first trip at sea following weaning. We used a new generation of satellite relay tags, which allow for the transmission of dive, accelerometer, and location data. We also monitored, at the same time, nine adult females from the colony during their post‐breeding trips, in order to compare diving and foraging behaviors. Juveniles showed a gradual improvement through time in their foraging skills. Like adults females, they remarkably adjusted their swimming effort according to temporal changes in buoyancy (i.e., a proxy of their body condition). They also did not appear to exceed their aerobic physiological diving limits, although dives were constrained by their smaller size compared to adults. Changes in buoyancy appeared to also influence their decision to either keep foraging or return to land, alongside the duration of their haul outs and choice of foraging habitat (oceanic vs. plateau). Further studies are thus needed to better understand how patterns in juveniles survival, and therefore elephant seal populations, might be affected by their changes in foraging skills and changes in their environmental conditions.  相似文献   

14.
The Crab Plover Dromas ardeola is the only waterbird species known to provision offspring well after the post-reproductive migration and through overwintering. A few previous quantitative studies have reported inconclusively that juveniles begged rarely, and also indiscriminately at other juveniles. Here, we describe the feeding behaviour of adult and juvenile Crab Plovers during the first part of the wintering period. Juveniles begged frequently for food, always toward adults, and obtained 0.1 prey items/min from them. Begging birds obtained the largest prey items of those captured by the adults. When foraging alone, juveniles captured prey at the same rate as adults, but captured smaller crabs. The feeding success of adults was not altered by the presence of the begging juvenile. Juveniles depended partly on adults during the first part of the overwintering period, but were almost independent towards the end. Crab Plovers may adopt such unusually prolonged care because they need to abandon their breeding areas quickly, when environmental conditions are extreme. Large numbers of Crab Plovers overwinter in a few areas, now subject to human alteration. Isolated adults may forage on other areas such as narrow and disturbed shores, but juveniles may require wide beaches, suitable for group foraging, that should be considered as key areas for the recruitment of juveniles into the population.  相似文献   

15.
ABSTRACT.   Juvenile birds lack the experience of adults and, as a result, are typically less efficient foragers. Environmental factors can influence how birds forage and the outcome of foraging bouts, but few investigators have considered the effects of such factors on the foraging behavior of juveniles. We examined the effects of two environmental factors, sunlight and soil moisture, on the foraging behavior of juvenile and adult American Robins ( Turdus migratorius ). Both factors had a significant effect on robin foraging, with robins more effective at capturing arthropods in the sun and worms in moist soils. However, juveniles were less successful than adults across all conditions. Juveniles were less successful than adults at capturing arthropods and were less efficient at capturing worms. Juveniles captured an average of one worm per minute, whereas adults captured nearly two worms per minute. Additionally, the high failure rates of juveniles (0.44/min) as compared to adults (0.20/min) may be indicative of their inability to choose suitable prey items. Finally, we found that juveniles tended to forage with other robins more than did adults, suggesting that they may use other individuals as cues for locating favorable foraging sites.  相似文献   

16.
Capsule Territory habitat influenced clutch size and within-brood variability of chick condition in Ring Ouzel Turdus torquatus.

Aims To assess the relationship of Ring Ouzel productivity and chick condition with territory habitat, in order to improve understanding of the importance of breeding habitat for population change.

Methods Productivity and chick condition were recorded for Ring Ouzel pairs in a small area of upland Scotland and these were related to vegetation and physical characteristics for all breeding territories using General Linear Models.

Results We found that clutch size and variability of chick condition varied with Ring Ouzel breeding habitat.

Clutch size was related to variation in territory habitat, broadly increasing with territory grass, sedge and rush cover. The best-supported models for within-brood variability of chick condition included fledgling number and territory habitat, with chick condition broadly becoming more variable with territory bracken cover. Relationships between breeding habitat and brood size, fledgling number or mean chick condition were not supported by the data, although statistical power was low.

Conclusion Breeding habitat may be a driver of demographic rates of Ring Ouzel, with the effects of poor habitat being passed on indirectly through chick condition. The population-level importance of these effects is unclear, but this study highlights a possible link between recent observed habitat changes and first-year survival, the demographic parameter contributing most to variation in population growth rate in UK Ring Ouzels.  相似文献   

17.
Trophic generalists tolerate greater habitat change than specialists; however, few studies explore how generalist trophic ecology is affected. We established how the trophic ecology of an extreme generalist, Rhabdomys pumilio, changed in relation to a directionally changing woody‐encroached savannah in Eastern Cape, South Africa by investigating (a) foraging behaviour, (b) trophic niche and (c) feedback effects. (a) Giving‐up densities showed that R. pumilio preferred foraging in subcanopy microhabitat during the night as a result of lower thermoregulatory costs, but had similar preferences for sub‐ and intercanopy microhabitats during the day. (b) An isotope analysis revealed that the dietary composition and trophic niche occupied by R. pumilio differed among tree canopy cover levels (0%, 30% and 80%), which appeared to be related to changes in C4 grass material and invertebrate availability. (c) Artificial seed patches suggested that R. pumilio was a potentially important postdispersal seed predator of the woody‐encroaching species, Vachellia karroo. Thus, an increase in tree canopy cover altered the trophic niche of R. pumilio by reducing foraging costs at night and providing alternative food resources in terms of availability and source. These findings demonstrate how an extreme generalist adapted to human‐induced habitat change through changes in its trophic ecology.  相似文献   

18.
Movement and habitat utilization of juvenile Lake Sturgeon (Acipenser fulvescens) were examined in Stephens Lake, a large hydroelectric reservoir on the Nelson River, Manitoba, Canada, between 21 June 2011, and 15 October 2012. Stephens Lake is defined by a sharp hydraulic gradient at the upstream end (Gull Rapids) and a pronounced reservoir transition zone (RTZ), characterized by a change in substrate composition from coarse to fine. Twenty juvenile Lake Sturgeon <600 mm fork length were captured in the RTZ, implanted with acoustic transmitters, and tracked using stationary receivers. Our primary hypothesis considered that, if foraging behaviour was contingent on sand substrate, these fish would spend the majority of the open‐water season foraging in the relatively small area where hydraulic gradients dictate sand deposition. Data indicated that tracked individuals were highly bottom oriented, and utilized deeper thalweg habitats exclusively during the first open‐water season. On average, juveniles spent only 22% of their open‐water time in the RTZ (river kilometer [rkm] 4.5–7.0). Most fish spent more time upstream as opposed to downstream, but a few individuals did utilize backwatered thalweg areas, suggesting that silt‐overlay habitats may be suitable for foraging. A seasonal spatial shift in distribution was also observed. Juveniles vacated the RTZ as winter progressed, moving further downstream and occasionally laterally into backwatered shallows, potentially avoiding extreme ice conditions and a large hanging ice dam that develops downstream of Gull Rapids. After ice break‐up, most individuals with active tags returned to the upstream end of Stephens Lake. The results add to the growing body of evidence that suggests factors other than habitat suitability influence Lake Sturgeon movement and utilization patterns, raising questions about the mechanisms for core‐area affinity in this species.  相似文献   

19.
M. J. Goodacre 《Bird Study》2013,60(2):111-113
Capsule Large‐scale intensification of agricultural management during the past 50 years has resulted in a reduction of invertebrate abundance and higher and denser ground vegetation. Food availability for insectivorous birds foraging on the ground has been negatively affected, but the interactions between birds and their food availability are complex and often species‐specific. Populations of Wrynecks Jynx torquilla are declining all over Europe, possibly because of reduced accessibility to their main prey, ground‐dwelling ants, due to higher and denser ground vegetation. However, it is not clear which ground vegetation structures are tolerated by foraging Wrynecks and which habitats are preferred.

Aims To identify the optimal ground vegetation structure and the main habitat types in which Wrynecks search for food.

Method We radiotracked seven Wrynecks in high‐intensity farmland in Switzerland to study foraging habitat use during the reproduction season. Several habitat variables were mapped at each foraging location and compared with locations selected randomly within individual home ranges.

Results Wrynecks preferentially foraged at places with ≥50% bare ground. Vegetation height was not important. Older fruit tree plantations and fallow land were the preferred foraging habitats.

Conclusion Conservation measures should concentrate on preserving semi‐open agricultural landscape matrices with loose ground vegetation cover to provide suitable foraging conditions. This can be achieved even in intensively managed farmland as illustrated in this study.  相似文献   

20.
Estuaries provide crucial foraging resources and nursery habitat for threatened populations of anadromous salmon. As such, there has been a global undertaking to restore habitat and tidal processes in modified estuaries. The foraging capacity of these ecosystems to support various species of out‐migrating juvenile salmon can be quantified by monitoring benthic, terrestrial, and pelagic invertebrate prey communities. Here, we present notable trends in the availability of invertebrate prey at several sites within a restoring large river delta in Puget Sound, Washington, U.S.A. Three years after the system was returned to tidal influence, we observed substantial additions to amphipod, copepod, and cumacean abundances in newly accessible marsh channels (from 0 to roughly 5,000–75,000 individuals/m2). In the restoration area, terrestrial invertebrate colonization was dependent upon vegetative cover, with dipteran and hymenopteran biomass increasing 3‐fold between 1 and 3 years post‐restoration. While the overall biodiversity within the restoration area was lower than in the reference marsh, estimated biomass was comparable to or greater than that found within the other study sites. This additional prey biomass likely provided foraging benefits for juvenile Chinook, chum, and coho salmon. Primary physical drivers differed for benthic, terrestrial, and pelagic invertebrates, and these invertebrate communities are expected to respond differentially depending on organic matter exchange and vegetative colonization. Restoring estuaries may take decades to meet certain success criteria, but our study demonstrates rapid enhancements in foraging resources understood to be used for estuary‐dependent wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号