首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhododendron aureum Georgi (Ericaceae) is a perennial alpine shrub endemic to Changbai Mountain in China. We used ISSR and RAPD markers to describe the diversity and genetic structure within and among four natural populations located at different altitudes. DNA from 66 individuals was amplified with ten ISSR markers and seven RAPD markers. High genetic diversity was observed by these two techniques at the species level. The genetic diversity of populations increased with altitudinal gradients from low to high. The coefficient of gene differentiation (GST 0.3652 in ISSR and 0.2511 in RAPD) and AMOVA analysis revealed that most genetic diversity was distributed within populations (61.96% in ISSR and 70.23% in RAPD). The estimate of gene flow based on GST was 0.8690 in ISSR and 1.4910 in RAPD. The UPGMA clustering results using ISSR and RAPD showed that all individuals from the same altitude were gathered together, and the two populations (TYD2a and YHLa) from middle altitudes always clustered together. Compared with populations from different altitudes, similar genetic diversity and low genetic differentiation were obtained from populations at the same altitudes, as revealed by ISSR markers. In addition to the reproductive strategy of R. aureum, these data highlight that local environmental conditions may play an important role in shaping the diversity and genetic structure of this species.  相似文献   

2.
Understanding historical context can help clarify the ecological and biogeographic characteristics of species population changes. The sable (Martes zibellina ) population has decreased dramatically in Northeast China since the l950s, and understanding the changes in its distribution over time is necessary to support conservation efforts. To achieve this goal, we integrated ecological niche modeling and historical records of sables to estimate the magnitude of change in their distribution over time. Our results revealed a 51.71% reduction in their distribution in 2000–2016 compared with the potential distribution in the 1950s. This reduction was related to climate change (Pearson's correlation: Bio1, ?.962, p  < .01; Bio2, ?.962, p  < .01; Bio5, .817, p  < .05; Bio6, .847, p  < .05) and human population size (?.956, p  < .01). The sable population tended to migrate in different directions and elevations over time in different areas due to climate change: In the Greater Khingan Mountains, they moved northward and to lower elevations; in the Lesser Khingan Mountains, they moved northward; and in the Changbai Mountains, they move southward and to higher elevations. Active conservation strategies should be considered in locations where sable populations have migrated or may migrate to.  相似文献   

3.
基于建立的小兴安岭南麓红松树轮宽度标准年表,分析红松径向生长与该地区温度和降水间的关系以及1982年升温突变对此相关性的影响。结果表明:6月平均温度与树轮宽度年表在变暖前后始终呈极显著负相关,是该地区红松径向生长的主要限制因子。基于此构建的区域1843—1982年6月平均温度重建方程稳定可靠。重建温度序列的偏暖时期和偏冷时期分别持续7年和29年,偏暖时段为1915—1921年,偏冷时段为1880—1891年和1932—1948年。小波分析结果显示6月平均温度存在2—7a周期变化。空间相关分析结果表明重建温度序列能很好的代表小兴安岭南麓及附近区域的温度变化。本研究拓展了研究区现有的气候数据,可为掌握小兴安岭气候变化规律和科学预测未来气候提供数据支撑。  相似文献   

4.
Chinese cherry (Prunus pseudocerasus Lindl.) is a commercially valuable fruit crop in China. In order to obtain new insights into its evolutionary history and provide valuable recommendations for resource conservation, phylogeographic patterns of 26 natural populations (305 total individuals) from six geographic regions were analyzed using chloroplast and nuclear DNA fragments. Low levels of haplotype and nucleotide diversity were found in these populations, especially in landrace populations. It is likely that a combined effect of botanical characteristics impact the effective population size, such as inbreeding mating system, long life span, as well as vegetative reproduction. In addition, strong bottleneck effect caused by domestication, together with founder effect after dispersal and subsequent demographic expansion, might also accelerate the reduction of the genetic variation in landrace populations. Interestingly, populations from Longmen Mountain (LMM) and Daliangshan Mountain (DLSM) exhibited relatively higher levels of genetic diversity, inferring the two historical genetic diversity centers of the species. Moreover, moderate population subdivision was also detected by both chloroplast DNA (GST = 0.215; NST = 0.256) and nuclear DNA (GST = 0.146; NST = 0.342), respectively. We inferred that the episodes of efficient gene flow through seed dispersal, together with features of long generation cycle and inbreeding mating system, were likely the main contributors causing the observed phylogeographic patterns. Finally, factors that led to the present demographic patterns of populations from these regions and taxonomic varieties were also discussed.  相似文献   

5.
Blanding’s turtle is a North American freshwater turtle whose main range occurs south of the Great Lakes; disjunct populations occur east of the Appalachian Mountains from New York to Nova Scotia. The species is listed as threatened or endangered in most of its range. We employed five variable microsatellites to examine samples of 300 individuals in 12 populations. Estimates of F ST based on pairwise comparisons of populations ranged from 0.000 to 0.465. Phylogenetic analysis of these F ST values reveals that the Appalachian Mountains and the Hudson River appear to present major barriers to gene flow in Blanding’s turtle. The extent of fine-scale genetic structure previously reported in the Nova Scotian populations was not found in other parts of the species’ range. We recommend that populations separated by the Appalachian Mountains as well as the highly disjunct Nova Scotian populations of Blanding’s turtle be recognized as evolutionarily significant units.  相似文献   

6.
小兴安岭是东北虎的历史分布区之一,近年来东北虎数次重返小兴安岭,预示了小兴安岭东北虎种群恢复的可能性。为了探明小兴安岭作为东北虎栖息地的适宜程度,本文以我国小兴安岭及俄罗斯联邦阿穆尔州、犹太自治州为整体研究区域,利用该区域内东北虎出现点数据,采用Maxent模型,以植被、气候、地形、积雪4类环境数据为基础,分析自然环境条件下小兴安岭东北虎潜在生境的适宜性及空间分布。结果显示:小兴安岭东北虎潜在适宜生境面积为0.96×104~1.03 ×104 km2,主要位于小兴安岭北部和东部,中部、西部和东南部有少量分散适宜生境;次适宜生境面积为2.46×104~1.76 ×104 km2,主要位于适宜生境周边区域;叶灌层差异、蒸散量、归一化植被指数、叶面积指数等植被相关因素及降水季节性、最冷季降水量等气候因素是影响东北虎栖息地适宜程度的主要环境特征变量。小兴安岭仍具备东北虎种群生存的自然条件。  相似文献   

7.
Although the adder (Vipera berus) has a large distribution area, this species is particularly threatened in Western Europe due to high habitat fragmentation and human persecution. We developed 13 new microsatellite markers in order to evaluate population structure and genetic diversity in the Swiss and French Jura Mountains, where the species is limited to only a few scattered populations. We found that V. berus exhibits a considerable genetic differentiation among populations (global FST = 0.269), even if these are not geographically isolated. Moreover, the genetic diversity within populations in the Jura Mountains and in the less perturbed Swiss Alps is significantly lower than in other French populations, possibly due to post-glacial recolonisation processes. Finally, in order to minimize losses of genetic diversities within isolated populations, suggestions for the conservation of this species in fragmented habitats are proposed.  相似文献   

8.
Comparisons between putatively neutral genetic differentiation amongst populations, FST, and quantitative genetic variation, QST, are increasingly being used to test for natural selection. However, we find that approximately half of the comparisons that use only data from wild populations confound phenotypic and genetic variation. We urge the use of a clear distinction between narrow‐sense QST, which can be meaningfully compared with FST, and phenotypic divergence measured between populations, PST, which is inadequate for comparisons in the wild. We also point out that an unbiased estimate of QST can be found using the so‐called ‘animal model’ of quantitative genetics.  相似文献   

9.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

10.
Understanding geographical pattern of genetic diversity and population structure is of great importance for formulating conservation and utilization strategies. In this study, we investigated the genetic diversity and population structure of 28 natural populations of Castanea mollissima in China using eight nuclear and six chloroplast microsatellite makers (nSSRs and cpSSRs). Populations from central China harbored the highest genetic diversity at both nSSR and cpSSR markers (nSSR: H E?=?0.705; cpSSR: H?=?0.461). The standardized measure of genetic differentiation estimated as G′ ST was 0.447 for nSSR and 0.803 for cpSSR, respectively. The GST-based pollen to seed flow ratio is 3.043, indicating that pollen flow is not extensive among C. mollissima populations. No obvious population genetic structure by geographical locations was found by STRUCTURE analysis based on nSSR data, and similarly, no signal of phylogeographic structure was detected for cpSSR analysis. Five boundaries defining zones of maximum genetic differences within the network of the C. mollissima populations were found, and the locations of those barriers were consistent with those of four mountains, i.e., Daloushan Mountain, Dabashan Mountain, Wushan Mountain, and Qingliangfeng Mountain, indicating that those mountains might act as genetic barriers obstructing the genetic exchange among natural C. mollissima populations. These results provide valuable baseline data for conservation and utilization of this species.  相似文献   

11.
One main challenge in conservation biology is to preserve genetic variability and adaptive variation within and among populations. However, constant anthropogenic habitat modifications have severe effects on the evolutionary dynamics shaping wild populations and pose a serious threat to the natural evolution of biodiversity. The aim of the present study was to unravel the genetic structuring of brown trout (Salmo trutta) populations in the largest freshwater catchment in Ireland, whose habitats have experienced major human-mediated changes over at least two centuries. A total of 419 juvenile fish were sampled from nine main rivers in the Corrib catchment and were genotyped using 12 microsatellites. Both Bayesian clustering and F ST-based analyses of genetic variance sorted these populations into five main genetically distinct groups, characterized by different extent of genetic differentiation among populations. These groups were also characterized by some degree of admixture, which can be partly explained by recent gene flow. Overall, the study suggests that the Corrib trout may conform to a metapopulation model with local populations that show different degrees of isolation and are interconnected by various level of gene flow. Results add further insights into metapopulation evolutionary dynamics and provide a useful basis to implement appropriate conservation strategies.  相似文献   

12.
该研究选取中国西北干旱区第三纪孑遗植物蒙古扁桃(Amygdalus mongolica),基于叶绿体DNA非编码trnH psbA序列对蒙古扁桃17个居群324个个体进行了谱系地理学研究。结果表明:(1)蒙古扁桃trnH psbA序列长度350 bp,变异位点63个,共有9种单倍型,居群间总遗传多样性为(Ht)为0.758,居群内平均遗传多样性为(Hs)为0.203,贺兰山东麓及阴山南麓边缘的居群具有较高的单倍型多样性及核苷酸多样性并固定较多特有单倍型,推测这2个地区是蒙古扁桃在第四纪冰期时的重要避难所。(2)AMOVA分析表明,居群间的遗传变异为83.84%,居群内的遗传变异为16.16%,居群间遗传分化系数Nst>GstNst=0.733, Gst=0.655, P>0.05),表明蒙古扁桃不存在明显的谱系地理结构;根据单倍型地理分布及网络关系图,把蒙古扁桃自然地理居群分为东、西两大地理组群,而且东、西地理组群没有共享单倍型;居群遗传结构分析表明,两大地理组群遗传分化较大。(3)蒙古扁桃居群在间冰期或冰期后经历了近期的居群扩张,由于奠基者效应使得多数居群只固定了单一的单倍型。  相似文献   

13.
Fagus grandifolia , were investigated throughout its geographical range, using allozyme polymorphisms. A total of 1,131 trees from 21 populations were examined for 32 alleles of 10 polymorphic and two monomorphic loci in eight enzyme systems. The mean expected heterozygosity was 0.186, which indicates a relatively high genetic diversity within the populations. The levels of population differentiation were high, as revealed by genetic parameters, i.e., G ST =0.168 and F ST =0.167. The results of principal component analysis on allele frequencies clearly revealed unique regional patterns of differentiation in genetic components among populations “with” and “without” vegetative regeneration by root suckers. The American beech populations consist of two genetically distinct clusters, one from the Gulf-coastal plain, eastern coastal plain, Piedmont Plateau and Ozark Plateau; and the other from the remaining northern glaciated territories. Populations from the Blue Ridge and Great Smoky Mountains turned out to belong to the latter cluster, which is also characterized by extensive regeneration via root suckers. The consequences of regional differentiation in genetic components are discussed in relation to the postglacial spread from refugia to the current geographic distributions and the mode of reproduction. Received 8 August 2000/ Accepted in revised form 29 May 2001  相似文献   

14.
Comprehensive evaluations of multiple genetic factors are rarely undertaken in rehabilitation attempts of extirpated populations, despite a growing need to address why some rehabilitation projects succeed and others fail. Using temporally-spaced samples of microsatellite DNA, we tested several genetic hypotheses that might explain an unsuccessful attempt to re-establish Atlantic salmon populations (Salmo salar) in two rivers of the inner Bay of Fundy, Canada. Census sizes (N) in both populations plummeted to near zero from initial increases after reintroduction/human-mediated recolonization occurred. Over the same period (1974–1996), both populations were characterized by low or relatively low effective sizes (N e ) and temporally unstable genetic structuring, whereas neighbouring populations, known historically for their significant salmon production, were not. Despite evidence for genetic bottlenecking and continual linkage disequilibrium over time in both populations, neither exhibited detectable inbreeding or a significant loss of allelic diversity or heterozygosity relative to known donor/source populations. Ratios of N e to N also increased with decreasing N in both populations, implying a buffering capacity against losses of genetic diversity at depressed abundances. Most significantly, multiple lines of evidence were consistent with the hypothesis that there has been substantial and recurrent asymmetric migration (migration rate, m) from neighbouring areas into both populations even after initial rehabilitation. This included migration from a historically productive population that became extirpated during the course of rehabilitation efforts, indicating that both populations might have naturally depended on immigration from neighbouring areas for persistence. Our results highlight the value of incorporating temporal genetic data beyond commonly used metrics of neutral genetic diversity (F ST, allelic richness, heterozygosity) to evaluate rehabilitation successes or failures. They also illustrate how the joint evaluation of multiple genetic concerns in rehabilitation attempts, at spatial scales beyond donor and rehabilitated populations, is useful for focusing future rehabilitation efforts.  相似文献   

15.
Using mitochondrial and microsatellite DNA data and a population genetic approach, we tested male‐mediated gene flow in the toad‐headed lizards Phrynocephalus przewalskii. The mitochondrial DNA (ND2 gene), on the one hand, revealed two major lineages and a strong population genetic structure (FST = 0.692; FST = 0.995). The pairwise differences between the two lineages ranged from 2.1% to 6.4% and the geographical division of the two lineages coincided with a mountain chain consisting of the Helan and Yin Mountains, suggesting a historical vicariant pattern. On the other hand, the nuclear microsatellite DNA revealed a significant but small population genetic structure (FST = 0.017; FST = 0.372). The pairwise FST among the nine populations examined with seven microsatellite DNA loci ranged from 0.0062 to 0.0266; the assignment test failed to detect any naturally occurring population clusters. Furthermore, the populations demonstrated a weak isolation by distance and a northeast to southwest clinal variation, rather than a vicariant pattern. A historical vicariant event followed by male‐mediated gene flow appears to be the best explanation for the data. Approximately 2–5 Ma, climatic change may have created an uninhabitable zone along the Helan‐Yin mountain chain and initiated the divergence between the two mitochondrial lineages. With further climatic changes, males were able to disperse across the mountain chain, causing sufficient gene flow that eventually erased the vicariant pattern and drastically reduced the population genetic structure, while females remained philopatric and maintained the mitochondrial DNA (mtDNA) divergence. Although polygyny mating system and female philopatry may partially contribute to the reduced movement of females, other hypotheses, such as female intrasexual aggression, should also be explored.  相似文献   

16.
In order to elucidate the factors affecting the genetic diversity of Quercus serrata in secondary forests in mountainous regions, we evaluated the level and distribution of genetic variation within and between 15 populations using seven microsatellite markers. The populations were at altitudes ranging from 140 to 1200 m in and around the Chichibu Mountains, central Japan.The expected heterozygosity (HE) ranged from 0.766 to 0.837. The two populations that exhibited the highest and the second highest values of HE are located beside a river and a lake, respectively. The two populations exhibiting the lowest and the second lowest values of HE are, in contrast, located on a summit and a ridge. The observed heterozygosity (HO) varied between 0.638 and 0.844, and the value of this variable was also higher for the populations beside water than those on summits or ridges. The soils at the waterside are wet, in contrast to those on ridges and summits, which tend to be shallow and subject to rapid desiccation. These results suggest that a lack of soil moisture is likely to inhibit the development and regeneration of Q. serrata, and that genetic diversity is reduced in arid areas. The genetic differentiation was low (FST=0.013) among the investigated populations, although all five populations in Yamanashi prefecture clustered together in an UPGMA tree. According to a multiple regression analysis, there was no significant isolation by distance among the populations along either the horizontal or vertical axes. Therefore, genetic variation within populations is affected by topography, but variation between populations is hardly affected by geographical factors. Furthermore, the results of this study suggest two conclusions. First, that altitude is not always a useful variable when estimating the genetic diversity of plant populations in mountainous regions. Second, that genetic diversity can vary even among the undifferentiated plant populations in small areas like the Chichibu Mountains.  相似文献   

17.
Genetic differentiation of Trialeurodes vaporariorum (Westwood 1856) populations was examined using biochemical and allozyme analysis. For biochemical analysis, general esterase and glutathion‐S‐transferase were tested. Allozyme genetic variability in 11 populations of T. vaporariorum was investigated using five loci from four enzyme systems. Although there are large variations between populations, T. vaporariorum is grouped into two populations with geographic barriers, based on Nei's genetic distance in the Baekdudaegan Mountains. Within these two groups, low migration and linkage disequilibrium reveal that populations tend to be influenced by gene drift rather than uniform selection pressures. The effect of genetic drift is greater than the effect of uniform selection by insecticides or host plant resistance, which is suggested by the FST estimates in this study. Based on this basic research, more effective whitefly control programs could be built in the future.  相似文献   

18.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

19.
A combination of founder effects and local adaptation – the Monopolization hypothesis – has been proposed to reconcile the strong population differentiation of zooplankton dwelling in ponds and lakes and their high dispersal abilities. The role genetic drift plays in genetic differentiation of zooplankton is well documented, but the impact of natural selection has received less attention. Here, we compare differentiation in neutral genetic markers (FST) and in quantitative traits (QST) in six natural populations of the rotifer Brachionus plicatilis to assess the importance of natural selection in explaining genetic differentiation of life‐history traits. Five life‐history traits were measured in four temperature × salinity combinations in common‐garden experiments. Population differentiation for neutral genetic markers – 11 microsatellite loci – was very high (FST = 0.482). Differentiation in life‐history traits was higher in traits related to sexual reproduction than in those related to asexual reproduction. QST values for diapausing egg production (a trait related to sexual reproduction) were higher than their corresponding FST in some pairs of populations. Our results indicate the importance of divergent natural selection in these populations and suggest local adaptation to the unpredictability of B. plicatilis habitats.  相似文献   

20.
Wang FY  Ge XJ  Gong X  Hu CM  Hao G 《Biochemical genetics》2008,46(1-2):75-87
The East Himalaya-Hengduan Mountains region is the center of diversity of the genus Primula, and P. sikkimensis is one of the most common members of the genus in the region. In this study, the genetic diversity and structure of P. sikkimensis populations in China were assessed using inter-simple sequence repeat (ISSR) and chloroplast microsatellite markers. The 254 individuals analyzed represented 13 populations. High levels of genetic diversity were revealed by ISSR markers. At the species level, the expected heterozygosity and Shannon’s index were 0.4032 and 0.5576, respectively. AMOVA analysis showed that 50.3% of the total genetic diversity was partitioned among populations. Three pairs of chloroplast microsatellite primers tested yielded a total of 12 size variants and 15 chloroplast haplotypes. Strong cpDNA genetic differentiation (G ST = 0.697) and evidence for phylogeographic structure were detected (N ST = 0.788, significantly higher than G ST). Estimated rates of pollen-mediated gene flow are approximately 27% greater than estimated rates of seed-mediated gene flow in P. sikkimensis. Both seed and pollen dispersal, however, are limited, and gene flow among populations appears to be hindered by the patchiness of the species’ habitats and their geographic isolation. These features may have played important roles in shaping the genetic structure of P. sikkimensis. A minimum-spanning tree of chloroplast DNA haplotypes was constructed, and possible glacial refugia of P. sikkimensis were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号