首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Mortality estimates are needed of birds and bats killed by wind turbines because wind power generation is rapidly expanding worldwide. A mortality estimate is based on the number of fatalities assumed caused by wind turbines and found during periodic searches, plus the estimated number not found. The 2 most commonly used estimators adjust mortality estimates by rates of searcher detection and scavenger removal of carcasses. However, searcher detection trials can be biased by the species used in the trial, the number volitionally placed for a given fatality search, and the disposition of the carcass on the ground. Scavenger removal trials can be biased by the metric representing removal rate, the number of carcasses placed at once, the duration of the trial, species used, whether carcasses were frozen, whether carcasses included injuries consistent with wind turbine collisions, season, distance from the wind turbines, and general location. I summarized searcher detection rates among reported trials, and I developed models to predict the proportion of carcasses remaining since the last fatality search. The summaries I present can be used to adjust previous and future estimates of mortality to improve comparability. I also identify research directions to better understand these and other adjustments needed to compare mortality estimates among wind farms.  相似文献   

2.
It is often necessary to estimate the number of wind turbine collision fatalities to assess impacts to birds following construction of wind farms. Detection of bird carcasses at wind turbines in the field is affected by carcass persistence and searcher detection rate. Integrated detection trials, which integrate carcass persistence and searcher detection trials into the periodic fatality search, have been proposed as an effective method for estimating these parameters. The purpose of our study was to test whether and how environmental factors affect integrated detection trial outcomes at multiple wind farms. We conducted this study at 10 wind farms in various environments of Japan. Binary data on trial outcomes in open versus forested areas served as our response variable in a generalized additive mixed model informed by days into trial, carcass body mass, season, whether snow covered the ground, and precipitation. For both ground cover types, days into trial and body mass were included in all the top models, suggesting that these factors most influenced bird carcass detection probability in integrated trials. The best model in open areas included days into trial, body mass, snow, and precipitation, and the best model in forested areas included days into trial, body mass, snow, precipitation, and season. Values of area under the curve indicated high accuracy of the best model for both ground cover types. The survey design needs to be appropriate to the size of the target species and to the environment in which the impacts will occur, such as the site's seasonality, its ground cover, and whether snow will cover the ground. Frequency of post-construction fatality monitoring should also be set cautiously, especially at wind farms located on small-bird migration routes, at wind farms in open areas, in areas with snow-covered ground in winter, or in forested areas during spring and summer because detection probabilities decline fastest under such conditions.  相似文献   

3.
Bat fatalities at wind facilities have been reported worldwide, and environmental impact assessments depend on searches for carcasses around wind turbines to quantify impacts. Some of the carcasses may go undetected by search teams or be removed by scavengers during search intervals, so these biases must be evaluated and taken into account in fatality estimation. We investigated the influence of different factors on searcher efficiency and scavenger removal in a dry forest area in northeastern Brazil, one of the regions with the highest density of wind turbines in the Neotropics. We conducted searcher efficiency and scavenger removal trials around 34 wind turbines from January 2017 to January 2018. Searcher efficiency was influenced by cover type, season, and carcass size, ranging between 12% for small bats in shrub vegetation during the rainy season and 96% for large bats in absent or sparse vegetation during the dry season. Carcass type and season affected scavenger removal; carcass persistence time was shorter for chicks (1.2 days) than for bats and mice (2.1 days), and the probability of a carcass persisting for a whole day was higher in the rainy season, while the probability of carcass persistence for 7, 14, and 28 days was higher in the dry season. The scavenger community was composed of canids, birds of prey, and insects, with systematic removal of carcasses by the crab-eating fox (Cerdocyon thous) throughout the year and by dung beetles in the rainy season. Based on our findings, impact assessments of wind facilities on bats should conduct searcher efficiency trials in all seasons and cover types around wind turbines, using bat carcasses or models of different sizes. Scavenger removal trials should cover all seasons as well, and use mouse carcasses (but not chick carcasses) as surrogates for bats.  相似文献   

4.
ABSTRACT For comparing impacts of bird and bat collisions with wind turbines, investigators estimate fatalities/megawatt (MW) of rated capacity/year, based on periodic carcass searches and trials used to estimate carcasses not found due to scavenger removal and searcher error. However, scavenger trials typically place ≥10 carcasses at once within small areas already supplying scavengers with carcasses deposited by wind turbines, so scavengers may be unable to process and remove all placed carcasses. To avoid scavenger swamping, which might bias fatality estimates low, we placed only 1–5 bird carcasses at a time amongst 52 wind turbines in our 249.7-ha study area, each carcass monitored by a motion-activated camera. Scavengers removed 50 of 63 carcasses, averaging 4.45 days to the first scavenging event. By 15 days, which corresponded with most of our search intervals, scavengers removed 0% and 67% of large-bodied raptors placed in winter and summer, respectively, and 15% and 71% of small birds placed in winter and summer, respectively. By 15 days, scavengers removed 42% of large raptors as compared to 15% removed in conventional trials, and scavengers removed 62% of small birds as compared to 52% removed in conventional trials. Based on our methodology, we estimated mean annual fatalities caused by 21.9 MW of wind turbines in Vasco Caves Regional Preserve (within Altamont Pass Wind Resource Area, California, USA) were 13 red-tailed hawks (Buteo jamaicensis), 12 barn owls (Tyto alba), 18 burrowing owls (Athene cunicularia), 48 total raptors, and 99 total birds. Compared to fatality rates estimated from conventional scavenger trials, our estimates were nearly 3 times higher for red-tailed hawk and barn owl, 68% higher for all raptors, and 67% higher for all birds. We also found that deaths/gigawatt-hour of power generation declined quickly with increasing capacity factor among wind turbines, indicating collision hazard increased with greater intermittency in turbine operations. Fatality monitoring at wind turbines might improve by using scavenger removal trials free of scavenger swamping and by relating fatality rates to power output data in addition to rated capacity (i.e., turbine size). The resulting greater precision in mortality estimates will assist wildlife managers to assess wind farm impacts and to more accurately measure the effects of mitigation measures implemented to lessen those impacts.  相似文献   

5.
Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically.  相似文献   

6.
As wind turbine-caused mortality of birds and bats increases with increasing wind energy capacity, accurate fatality estimates are needed to assess effects, identify collision factors, and formulate mitigation. Finding a larger proportion of collision victims reduces the magnitude of adjustment for the proportion not found, thus reducing opportunities for bias. We tested detection dogs in trials of bat and small-bird carcasses placed randomly in routine fatality monitoring at the Buena Vista and Golden Hills Wind Energy projects, California, USA, 2017. Of trial carcasses placed and confirmed available before next-day fatality searches, dogs detected 96% of bats and 90% of small birds, whereas humans at a neighboring wind project detected 6% of bats and 30% of small birds. At Golden Hills dogs found 71 bat fatalities in 55 searches compared to 1 bat found by humans in 69 searches within the same search plots over the same season. Dog detection rates of trial carcasses remained unchanged with distance from turbine, and dogs found more fatalities than did humans at greater distances from turbines. Patterns of fatalities found by dogs within search plots indicated 20% of birds and 4–14% of bats remained undetected outside search plots at Buena Vista and Golden Hills. Dogs also increased estimates of carcass persistence by finding detection trial carcasses that the trial administrator had erroneously concluded were removed. Compared to human searches, dog searches resulted in fatality estimates up to 6.4 and 2.7 times higher for bats and small birds, respectively, along with higher relative precision and >90% lower cost per fatality detection. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

7.
Scavenging constitutes an understudied energy pathway in terrestrial ecosystems, with important connections to disease ecology. A prevailing null hypothesis in scavenging ecology is that carcasses serve as a risk-free meal for whatever animal first encounters them on the landscape. We tested this hypothesis by focusing on a suspected risk that scavengers would face at carcasses: the risk of pathogen exposure. We conducted field trials with mouse carcasses in which we manipulated potential cues to pathogen risk and then monitored scavenger foraging decisions. Separately, we studied pathogen and commensal bacteria dynamics within mouse carcasses through time in the laboratory to better understand how carcass age might impact pathogen risk to scavengers. A visual cue to pathogen risk in the field (carcasses deployed in groups of 7 in 1 m2) caused facultative vertebrate scavengers to pass on the opportunity to feed at a rate six-times higher than for carcasses deployed singly (46.9% vs. 7.7%), suggesting an ability to perceive cues to pathogen risk at carcasses. The cues to carcass age, however, produced no effect on facultative scavenger behavior in our field trials. Laboratory trials demonstrated that both commensal enteric bacteria and a known pathogen (Listeria monocytogenes) increased at least through bloat and active decay stages in carcasses, suggesting that cues to carcass age may not help scavengers reduce pathogen risk early in decomposition. In providing evidence counter to the free meal hypothesis, our results support the continued formation of an alternative risk-based framework to understand scavenger behavior at carcasses.  相似文献   

8.
Surveillance targeting dead wild birds, in particular American crows (Corvus brachyrhynchos), plays a critical role in West Nile virus (WNV) surveillance in the United States. Using crow decoy surrogates, detection and reporting of crow carcasses within urban and rural environments of DeKalb County, Georgia were assessed for potential biases that might occur in the county's WNV surveillance program. In each of two replicated trials, during July and September 2003, 400 decoys were labeled with reporting instructions and distributed along randomly chosen routes throughout designated urban and rural areas within DeKalb County. Information-theoretic methods were used to compare alternative models incorporating the effects of area and trial on probabilities of detection and reporting. The model with the best empirical support included the effects of area on both detection and reporting of decoys. The proportion of decoys detected in the urban area (0.605, SE=0.024) was approximately twice that of the rural area (0.293, SE=0.023), and the proportion of decoys reported in the urban area (0.273, SE=0.023) was approximately three times that of the rural area (0.103, SE=0.028). These results suggest that human density and associated factors can substantially influence dead crow detection and reporting and, thus, the perceived distribution of WNV. In a second and separate study, the persistence and fate of American crow and house sparrow (Passer domesticus) carcasses were assessed in urban and rural environments in Athens-Clarke, Madison, and Oconee counties, Georgia. Two replicated trials using 96 carcasses of each species were conducted during July and September 2004. For a portion of the carcasses, motion sensitive cameras were used to monitor scavenging species visits. Most carcasses (82%) disappeared or were decayed by the end of the 6-day study. Carcass persistence averaged 1.6 days in rural areas and 2.1 days in urban areas. We analyzed carcass persistence rates using a known-fate model framework in program MARK. Model selection based on Akaike's Information Criteria (AIC) indicated that the best model explaining carcass persistence rates included species and number of days of exposure; however, the model including area and number of days of exposure received approximately equal support. Model-averaged carcass persistence rates were higher for urban areas and for crow carcasses. Six mammalian and one avian species were documented scavenging upon carcasses. Dead wild birds could represent potential sources of oral WNV exposure to these scavenging species. Species composition of the scavenger assemblage was similar in urban and rural areas but "scavenging pressure" was greater in rural areas.  相似文献   

9.
Roadkill studies are typically conducted without regard to the carcass permanency time on the highway, which may lead to underestimation of roadkill data, especially small animals that are quickly removed by scavengers. To evaluate the carcass duration time on the lane and its relation to the roadkill time event, we conducted an experiment comparing the removal rate of small carcasses between different stretches of a highway and stretches of dirt roads. The rates found in the study were considered high, with 89 % of carcasses being removed in the first 24 h and 66 % within 12 h. The removals were high for both road categories but reached their peaks at different periods of the day, being higher during the day on the highway and at night on dirt roads. We believe that removal on the highway is dictated by higher vehicular traffic and mainly by the action of scavenger birds during the day, while on dirt roads, it is due to the action of different opportunistic scavengers during the night.  相似文献   

10.
The particle size of the food resource strongly determines the structure and dynamics of food webs. However, the ecological implications of carcass size variation for scavenging networks structure and functioning have been largely overlooked. Here we investigate differences in scavenging patterns due to carcass size in a complex vertebrate scavenger community, Hluhluwe‐iMfolozi Park, South Africa, while taking into account seasonality. We monitored the consumption of three types of experimental carcasses: ‘small’ (< 10 kg), ‘medium’ (10–100 kg) and ‘large’ (> 100 kg). We employed general lineal models to explore the influence of carcass size on 1) scavenging network structure (scavenger species richness per carcass) and 2) functioning (carcass detection time, consumption time, consumption rate and percentage of carrion consumed). We also tested whether the structure of the scavenging network of each carcass size was nested, i.e. whether the scavenging assemblage in species‐poor carcasses was a subset of the assemblage consuming species‐rich carcasses. We found strong evidence indicating that carcass size is a major factor governing the associated scavenger assemblage. Scavenger species richness per carcass and carcass consumption time and rate increased with carcass size, while carcass detection time and percentage of carrion biomass consumed were negatively related to carcass size. Strikingly, most of the carrion biomass was consumed by facultative scavengers, represented by large mammalian carnivores, rather than by obligate scavengers (i.e. vultures). Scavenging network nestedness tended to be higher at larger carcasses, and nestedness was sensitive to the removal of the most connected species in the network (spotted hyena) rather than vultures. When comparing scavenging and predation assemblages, crucial size‐dependent differences emerge. Also, we identified a traditionally ignored mechanism by which hunting large prey could be relatively less profitable for predators, namely the costs associated with competition from scavengers and decomposers.  相似文献   

11.
Recent research has demonstrated how scavenging, the act of consuming dead animals, plays a key role in ecosystem structure, functioning, and stability. A growing number of studies suggest that vertebrate scavengers also provide key ecosystem services, the benefits humans gain from the natural world, particularly in the removal of carcasses from the environment. An increasing proportion of the human population is now residing in cities and towns, many of which, despite being highly altered environments, contain significant wildlife populations, and so animal carcasses. Indeed, non‐predation fatalities may be higher within urban than natural environments. Despite this, the fate of carcasses in urban environments and the role vertebrate scavengers play in their removal have not been determined. In this study, we quantify the role of vertebrate scavengers in urban environments in three towns in the UK. Using experimentally deployed rat carcasses and rapid fire motion‐triggered cameras, we determined which species were scavenging and how removal of carcass biomass was partitioned between them. Of the 63 experimental carcasses deployed, vertebrate scavenger activity was detected at 67%. There was a significantly greater depletion in carcass biomass in the presence (mean loss of 194 g) than absence (mean loss of 14 g) of scavengers. Scavenger activity was restricted to three species, Carrion crows Corvus corone, Eurasian magpies Pica pica, and European red foxes Vulpes vulpes. From behavioral analysis, we estimated that a maximum of 73% of the carcass biomass was removed by vertebrate scavengers. Despite having low species richness, the urban scavenger community in our urban study system removed a similar proportion of carcasses to those reported in more pristine environments. Vertebrate scavengers are providing a key urban ecosystem service in terms of carcass removal. This service is, however, often overlooked, and the species that provide it are among some of the most disliked and persecuted.  相似文献   

12.
ABSTRACT Collisions with windows remain an important human‐related threat to bird survival in urban landscapes. Accurately estimating the magnitude of avian mortality at windows is difficult and may be influenced by many sources of error, such as scavenging of carcasses. Failure to account for removal of carcasses by scavengers can bias estimates of window mortality. We tested the hypothesis that carcass survival depends on local habitat factors known to influence scavenger behavior. Scavenger activity on bird carcasses was documented at 20 buildings in an urban landscape in northwestern Illinois for 1 week during each season of a year. Known‐fate models were used to relate carcass survival to local habitat composition and to evaluate temporal variation in survival. We also documented species of scavengers and the timing of scavenging using motion‐triggered cameras. Daily carcass survival was greater in winter than during spring, summer, and fall. Survival was related negatively to canopy cover (trees and shrubs within a 50‐m buffer) and window area, and positively to pavement cover. Using an exponential model of survival time, estimated mean time of survival of carcasses (t± SE) was 82.9 ± 11.7 d for winter and 11.8 ± 7.2 d for other seasons. Raccoons (Procyon lotor) scavenged more carcasses than other species. Our results suggest that (1) carcass survival times may be short at locations with preferred habitats of known scavengers and predictable sources of food, and (2) knowledge of scavenger distribution and activity can inform predictive models of persistence. In studies of bird‐window collisions, the influence of scavenger bias can be minimized by maintaining short time intervals between carcass searches. Search intervals can be inferred by estimating the number of days that a carcass should persist at a site, which can be calculated using predicted daily survival probabilities of carcasses at study buildings.  相似文献   

13.
In a recent paper, Smallwood et al. (2010) conducted a study to compare their “novel” approach to conducting carcass removal trials with what they term the “conventional” approach and to evaluate the effects of the different methods on estimated avian fatality at a wind power facility in California. A quick glance at Table 3 that succinctly summarizes their results and provides estimated fatality rates and 80% confidence intervals calculated using the 2 methods reveals a surprising result. The confidence intervals of all of their estimates and most of the conventional estimates extend below 0. These results imply that wind turbines may have the capacity to create live birds. But a more likely interpretation is that a serious error occurred in the calculation of either the average fatality rate or its standard error or both. Further evaluation of their methods reveals that the scientific basis for concluding that “many estimates of scavenger removal rates prior to [their] study were likely biased low due to scavenger swamping” and “previously reported estimates of avian fatality rates … should be adjusted upwards” was not evident in their analysis and results. Their comparison to conventional approaches was not applicable, their statistical models were questionable, and the conclusions they drew were unsupported. © 2013 The Wildlife Society.  相似文献   

14.
ABSTRACT Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy afflicting the Cervidae family in North America, causing neurodegeneration and ultimately death. Although there are no reports of natural cross-species transmission of CWD to noncervids, infected deer carcasses pose a potential risk of CWD exposure for other animals. We placed 40 disease-free white-tailed deer (Odocoileus virginianus) carcasses and 10 gut piles in the CWD-affected area of Wisconsin (USA) from September to April in 2003 through 2005. We used photos from remotely operated cameras to characterize scavenger visitation and relative activity. To evaluate factors driving the rate of carcass removal (decomposition), we used Kaplan-Meier survival analysis and a generalized linear mixed model. We recorded 14 species of scavenging mammals (6 visiting species) and 14 species of scavenging birds (8 visiting species). Prominent scavengers included American crows (Corvus brachyrhynchos), raccoons (Procyon lotor), and Virginia opossums (Didelphis virginiana). We found no evidence that deer consumed conspecific remains, although they visited gut piles more often than carcasses relative to temporal availability in the environment. Domestic dogs, cats, and cows either scavenged or visited carcass sites, which could lead to human exposure to CWD. Deer carcasses persisted for 18 days to 101 days depending on the season and year, whereas gut piles lasted for 3 days. Habitat did not influence carcass decomposition, but mammalian and avian scavenger activity and higher temperatures were positively associated with faster removal. Infected deer carcasses or gut piles can serve as potential sources of CWD prions to a variety of scavengers. In areas where surveillance for CWD exposure is practical, management agencies should consider strategies for testing primary scavengers of deer carcass material.  相似文献   

15.
ABSTRACT We examined variation in persistence rates of waterfowl carcasses placed along a series of transects in tundra habitats in western Alaska. This study was designed to assess the effects of existing tower structures and was replicated with separate trials in winter, summer and fall as both the resident avian population and the suite of potential scavengers varied seasonally. Carcass persistence rates were uniformly low, with <50% of carcasses persisting for more than a day on average. Persistence rate varied by carcass age, carcass size, among transects and was lowest in the fall and highest in the summer. We found little support for models where persistence varied in relation to the presence of tower structures. We interpret this as evidence that scavengers were not habituated to searching for carcasses near these structures. Our data demonstrate that only a small fraction of bird carcasses are likely to persist between searches, and if not appropriately accounted for, scavenging bias could significantly influence bird mortality estimates. The variation that we documented suggests that persistence rates should not be extrapolated among tower locations or across time periods as the variation in carcass persistence will result in biased estimates of total bird strike mortality.  相似文献   

16.
Carcass decomposition largely depends on vertebrate scavengers. However, how behavioral differences between vertebrate scavenger species, the dominance of certain species, and the diversity of the vertebrate scavenger community affect the speed of carcass decomposition is poorly understood. As scavenging is an overlooked trophic interaction, studying the different functional roles of vertebrate species in the scavenging process increases our understanding about the effect of the vertebrate scavenger community on carcass decomposition. We used motion‐triggered infrared camera trap footages to profile the behavior and activity of vertebrate scavengers visiting carcasses in Dutch nature areas. We grouped vertebrate scavengers with similar functional roles. We found a clear distinction between occasional scavengers and more specialized scavengers, and we found wild boar (Sus scrofa) to be the dominant scavenger species in our study system. We showed that these groups are functionally different within the scavenger community. We found that overall vertebrate scavenger diversity was positively correlated with carcass decomposition speed. With these findings, our study contributes to the understanding about the different functional roles scavengers can have in ecological communities.  相似文献   

17.
Scavenging is a widespread phenomenon in vertebrate communities which has rarely been accounted for, in spite of playing an essential role in food webs by enhancing nutrient recycling and community stability. Most studies on scavenger assemblages have often presented an oversimplified view of carrion foraging. Here, we applied for the first time the concept of nestedness to the study of a species-rich scavenger community in a forest ecosystem (Białowieża Primeval Forest, Poland) following a network approach. By analysing one of the most complete datasets existing up to now in a pristine environment, we have shown that the community of facultative scavengers is not randomly assembled but highly nested. A nested pattern means that species-poor carcasses support a subset of the scavenger assemblage occurring at progressively species-rich carcasses. This result contradicts the conventional view of facultative scavenging as random and opportunistic and supports recent findings in scavenging ecology. It also suggests that factors other than competition play a major role in determining community structure. Nested patterns in scavenger communities appear to be promoted by the high diversity in carrion resources and consumers, the differential predictability of the ungulate carcass types and stressful environmental conditions.  相似文献   

18.
Carrion consumption patterns in vertebrate scavenger communities may be influenced by several interacting factors. We assessed the effects of the number of scavenger species and the presence of obligate scavengers (vultures) on carcass detection and consumption times, and the structure (nestedness) of the scavenger assemblage by exploring consumption patterns of lagomorph carcasses provided experimentally. Carcass detection and consumption times were strongly inversely related to vulture presence, whereas scavenger richness had a low contribution, except when interacting with vulture presence. However, none of the scavenger communities presented a nested pattern, perhaps because of the small size of lagomorphs, which prevents large numbers of scavengers and interspecific interactions occurring at one carcass. Our results suggest that scavenger species richness, especially the presence of vultures, increases scavenging efficiency.  相似文献   

19.
Unravelling how biodiversity is maintained despite species competition for shared resources has been a central question in community ecology, and is gaining relevance amidst the current biodiversity crisis. Yet, we have still a poor understanding of the mechanisms that regulate species coexistence and shape the structure of assemblages in highly competitive environments such as carrion pulsed resources. Here, we study how large vertebrates coexist in scavenger assemblages by adapting their diel activity at large ungulate carcasses in NW Spain. We used camera traps to record vertebrate scavengers consuming 34 carcasses of livestock and hunted wild ungulates, which allowed us to assess also differences regarding carcass origin. To evaluate temporal resource partition among species, we estimated the overlap of diel activity patterns and the mean times of each scavenger at carcasses. We recorded 16 species of scavengers, 7 mammals and 9 birds, and found similar richness at both types of carcasses. Birds and mammals showed contrasting diel activity patterns, with birds using carcasses during daytime (mean= 11:38 h) and mammals mostly at night (23:09 h). The unimodal activity patterns of scavengers showed asynchronous peaks among species. Subordinate species modified their activity patterns at carcasses used by apex species to reduce temporal overlap. Also, diel activity patterns of vultures closely followed those of corvids, suggesting facilitation processes in which corvids would enhance carcass detection by vultures. Two mammal species (12.5%) increased nocturnality at carcasses of hunted ungulates, which could be a response to human disturbance. Our results suggest that both temporal segregation and coupling mediate the coexistence of large vertebrates at carcasses. These mechanisms might lead to richer scavenger assemblages and thereby more efficient ones in driving critical ecosystem functions related to carrion consumption, such as energy and nutrient recycling and biodiversity maintenance.  相似文献   

20.
Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June–August). We used motion‐activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7‐day trials, there was a 10.1‐fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from vertebrates to decomposers. Such changes could have substantial implications for disease transmission, nutrient cycling, and ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号