首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 μmol mg protein−1 min−1). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (μaerobic 0.09±0.03 h−1). Co-expression of Lactococcus lactis β-phosphoglucomutase accelerated maltose utilization via this route (μaerobic 0.21±0.01 h−1, μanaerobic 0.10±0.00 h−1). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms.  相似文献   

3.
We demonstrate that the DAL5 gene, encoding a necessary component of the allantoate transport system, is constitutively expressed in Saccharomyces cerevisiae. Its relatively high basal level of expression did not increase further upon addition of allantoin pathway intermediates. However, steady-state DAL5 mRNA levels dropped precipitously when a repressive nitrogen source was provided. These control characteristics of DAL5 expression make this gene a good model with which to unravel the mechanism of nitrogen catabolite repression. Its particular advantage relative to other potentially useful genes derives from its lack of control by induction and hence the complicating effects of inducer exclusion.  相似文献   

4.
5.
6.
BackgroundAcquisition and distribution of zinc supports a number of biological processes. Various molecular factors are involved in zinc metabolism but not fully explored.Basic proceduresSpontaneous mutants were generated in yeast with excess zinc culture followed by whole genome DNA sequencing to discover zinc metabolism related genes by bioinformatics. An identified mutant was characterized through metallomic and molecular biology methods.Main findingsHere we reported that MTM1 knockout cells displayed much stronger zinc tolerance than wild type cells on SC medium when exposed to excess zinc. Zn accumulation of mtm1Δ cells was dramatically decreased compared to wild type cells under excessive zinc condition due to MTM1 deletion reduced zinc uptake. ZRC1 mRNA level of mtm1Δ cells was significantly higher than that in the wild-type strain leading to increased vacuolar zinc accumulations in mtm1Δ cells. The mRNA levels of ZRT1 and ZAP1 decreased in mtm1Δ cells contributing to less Zn uptake. The zrc1Δmtm1Δ double knockout strain exhibited Zn sensitivity. MTM1 knockout did not afford resistance to excess zinc through an effect mediated through an influence on levels of ROS. Superoxide dismutase 2 (Sod2p) activity in mtm1Δ cells was severely impaired and not restored through Zn supplementation. Meanwhile, additional Zn showed no significant effect on the localization and expression of Mtm1p.Principal conclusionsOur study reveals the MTM1 gene plays an important role in the regulation of zinc homeostasis in yeast cells via changing zinc uptake and distribution. This discovery provides new insights for better understanding biochemical communication between vacuole and mitochondrial in relation to zinc-metabolism.  相似文献   

7.
Abstract NADP-glutamate dehydrogenase (NADP-GDH) from Saccharomyces cerevisiae has a lower activity in yeast grown on glutamate as nitrogen source than when grown on ammonium. With the use of the immunotitration method, it was found that the difference in activity was parallel to the difference in immunoprecipitable material. By isotope incorporation studies, it was established that the decrease in NADP-glutamate dehydrogenase levels in glutamate-grown cells was brought about by an increase in the degradation rate and a decrease in the synthesis constant of the enzyme. The degradation rate of NADP-glutamate dehydrogenase is further increased in carbon-starved cells. The possible role of internal metabolites in modulating NADP-glutamate dehydrogenase degradation is discussed.  相似文献   

8.
To optimize the recovery of mRNAs extracted from yeast, different methods for sampling the yeast cells have been compared. For Saccharomyces cerevisiae strains growing on gluconeogenic carbon sources (derepressed cells) rapid filtration allowed much higher yields (3-10 fold) than centrifugation at room temperature or at 4 degrees C. Recovery of total RNA was similar with the different procedures. For S. cerevisiae growing on glucose, filtration caused a 2-4 fold improvement on the mRNA yields obtained from cells sampled by centrifugation. It was also observed that, when derepressed cells of S. cerevisiae W303-1A were collected by filtration and flash-frozen, part of the 25S and 18S rRNAs (up to 50%) was recovered in an unprocessed 32S or 33S form.  相似文献   

9.
酵母内源后鲨烯路径中的固醇类物质,是异源甾体类药物合成的重要前体。为了通过微调后鲨烯路径,与异源模块进行适配,以期达到提高异源甾体类化合物表达的目的,以维生素D3的直接前体-7-脱氢胆固醇(7-DHC)的合成为例,首先在固醇C-24甲基转移酶(ERG6)缺失的酿酒酵母BY4742中,通过导入人源固醇C-24 还原酶DHCR24,并过表达截短的羟甲基戊二酰辅酶A还原酶tHMGR,获得可以合成7-DHC的人工酵母。在此基础上,将后鲨烯路径分割并构建成ERG1、ERG7、ERG11、ERG24-25-26-27和ERG2-3这5个模块,分别在所构建的7-DHC合成菌株中过表达。通过GC-TOF/MS分析7-DHC以及后鲨烯路径中相关代谢中间体的含量,并结合主成分分析发现,过表达不同后鲨烯模块会引起后鲨烯路径上固醇组分的变化而最终影响7-DHC的产量:与出发菌株相比,过表达ERG11模块会显著强化其他固醇物质到酵母固醇的转化;而过表达ERG2-3模块则会减少鲨烯的积累,同时显著增加羊毛固醇及其之后的固醇组分的含量,并获得迄今为止7-DHC在微生物中摇瓶水平的最高产量。因此,对ERG11和ERG2-3的表达优化对7-DHC的合成以及后鲨烯路径代谢流的强化起到了显著的作用,是后续优化人工7-DHC合成酵母的潜在靶点。为研究后鲨烯路径与其他异源甾体合成模块间的适配,提供了可供参考的案例。  相似文献   

10.
11.
12.
13.
Summary The nuclear genome encoded yeast protein CBS2 is required for translational activation of mitochondrial cytochrome b RNA. Genetic studies have shown that the target sequence of the CBS2 protein is the 5 untranslated leader sequence of cytochrome b RNA. Here we report on the intracellular localization of CBS2. CBS2 protein, expressed in Escherichia coli and prepared from inclusion bodies, was used as an antigen to raise a polyclonal rabbit antiserum. Affinity-purified CBS2 antibodies detect a 45 kDa protein in mitochondrial lysates of wild-type cells, which is absent in a strain in which the CBS2 gene has been deleted. The protein is overexpressed in mitochondrial extracts of a transformant carrying the CBS2 gene on a high copy number plasmid, but undetectable in the post-mitochondrial supernatant. Intramitochondrial localization of CBS2 was verified by in vitro import of CBS2 protein that had been synthesized in a reticulocyte lysate programmed with CBS2 mRNA transcribed in vitro. Mitochondrial import of CBS2 is not accompanied by any detectable proteolytic processing.  相似文献   

14.
15.
16.
Manipulation of monoterpene synthases to maximize flux towards targeted products from GPP (geranyl diphosphate) is the main challenge for heterologous monoterpene overproduction, in addition to cell toxicity from compounds themselves. In our study, by manipulation of the key enzymes geraniol synthase (GES) and farnesyl diphosphate synthase (Erg20), geraniol (a valuable acyclic monoterpene alcohol) overproduction was achieved in Saccharomyces cerevisiae with truncated 3-hydroxy-3-methylglutaryl-coenzyme reductase (tHMGR) and isopentenyl diphosphate isomerase (IDI1) overexpressed. The expressions of all above engineered genes were under the control of Gal promoter for alleviating product toxicity. Geraniol production varied from trace amount to 43.19 mg/L (CrGES, GES from Catharanthus roseus) by screening of nine GESs from diverse species. Further through protein structure analysis and site-directed mutation in CrGES, it was firstly demonstrated that among the high-conserved amino acid residues located in active pocket, Y436 and D501 with strong affinity to diphosphate function group, were critical for the dephosphorylation (the core step for geraniol formation). Moreover, the truncation position of the transit peptide from the N-terminus of CrGES was found to influence protein expression and activity significantly, obtaining a titer of 191.61 mg/L geraniol in strain with CrGES truncated at S43 (t3CrGES). Furthermore, directed by surface electrostatics distribution of t3CrGES and Erg20WW (Erg20F96W-N127W), co-expression of the reverse fusion of Erg20ww/t3CrGES and another copy of Erg20WW promoted the geraniol titer to 523.96 mg/L at shakes flask level, due to enhancing GPP accessibility led by protein interaction of t3CrGES-Erg20WW and the free Erg20WW. Eventually, a highest reported titer of 1.68 g/L geraniol in eukaryote cells was achieved in 2.0 L fed-batch fermentation under carbon restriction strategy. Our research opens large opportunities for other microbial production of monoterpenes. It also sets a good reference for desired compounds overproduction in microorganisms in terms of manipulation of key enzymes by protein engineering and metabolic engineering.  相似文献   

17.
The yeast Saccharomyces cerevisiae contains three heat-inducible hsp70 genes. We have characterized the promoter region of the hsp70 heat shock gene YG100, that also displays a basal level of expression. Deletion of the distal region of the promoter resulted in an 80% drop in the basal level of expression without affecting expression after heat shock. Progressive-deletion analysis suggested that sequences necessary for heat-inducible expression are more proximal, within 233 base pairs of the initiation region. The promoter region of YG100 contains multiple elements related to the Drosophila melanogaster heat shock element (HSE; CnnGAAnnT TCnnG). Deletion of a proximal promoter region containing one element, HSE2, eliminated most of the heat-inducible expression of YG100. The upstream activation site (UAS) of the yeast cytochrome c gene (CYC1) can be substituted by a single copy of HSE2 plus its adjoining nucleotides (UASHS). This hybrid promoter displayed a substantial level of expression before heat shock, and the level of expression was elevated eightfold by heat shock. YG100 sequences that flank UASHS inhibited basal expression of UASHS in the hybrid promoter but not its heat-inducible expression. This inhibition of basal UASHS activity suggests that negative regulation is involved in modulating expression of this yeast heat shock gene.  相似文献   

18.
19.
Protein kinase A (PKA) activity was measured in situ in permeabilised Saccharomyces cerevisiae cells in the absence and the presence of cAMP. Four strains genetically predicted to have differential PKA-dependent phenotypes were used: a wild-type strain and a strain containing a bcy1-14 mutation (with almost constitutively active PKA), and the same strains with overexpression of the wild-type or mutant BCY1 gene, respectively. Cells were grown on galactose or glucose. The measured phenotypic characteristics were: trehalose and glycogen levels and the activity of a reporter gene under control of the NTH1 promoter. The 'endogenous' PKA activity (measured in situ in the absence of cAMP) showed the best correlation with the PKA-dependent phenotypes determined in vivo. We propose that this parameter offers a good estimate for the degree of activation of PKA in vivo.  相似文献   

20.
Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene-environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene-environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号