首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Biodiversity in the Tropical Andes is under continuous threat from anthropogenic activities. Projected changes in climate will likely exacerbate this situation. Using species distribution models, we assess possible future changes in the diversity and climatic niche size of an unprecedented number of species for the region. We modeled a broad range of taxa (11,012 species of birds and vascular plants), including both endemic and widespread species and provide a comprehensive estimation of climate change impacts on the Andes. We find that if no dispersal is assumed, by 2050s, more than 50% of the species studied are projected to undergo reductions of at least 45% in their climatic niche, whilst 10% of species could be extinct. Even assuming unlimited dispersal, most of the Andean endemics (comprising ∼5% of our dataset) would become severely threatened (>50% climatic niche loss). While some areas appear to be climatically stable (e.g. Pichincha and Imbabura in Ecuador; and Nariño, Cauca, Valle del Cauca and Putumayo in Colombia) and hence depict little diversity loss and/or potential species gains, major negative impacts were also observed. Tropical high Andean grasslands (páramos and punas) and evergreen montane forests, two key ecosystems for the provision of environmental services in the region, are projected to experience negative changes in species richness and high rates of species turnover. Adapting to these impacts would require a landscape-network based approach to conservation, including protected areas, their buffer zones and corridors. A central aspect of such network is the implementation of an integrated landscape management approach based on sustainable management and restoration practices covering wider areas than currently contemplated.  相似文献   

2.
Organisms are projected to shift their distribution ranges under climate change. The typical way to assess range shifts is by species distribution models (SDMs), which predict species’ responses to climate based solely on projected climatic suitability. However, life history traits can impact species’ responses to shifting habitat suitability. Additionally, it remains unclear if differences in vital rates across populations within a species can offset or exacerbate the effects of predicted changes in climatic suitability on population viability. In order to obtain a fuller understanding of the response of one species to projected climatic changes, we coupled demographic processes with predicted changes in suitable habitat for the monocarpic thistle Carlina vulgaris across northern Europe. We first developed a life history model with species‐specific average fecundity and survival rates and linked it to a SDM that predicted changes in habitat suitability through time with changes in climatic variables. We then varied the demographic parameters based upon observed vital rates of local populations from a translocation experiment. Despite the fact that the SDM alone predicted C. vulgaris to be a climate ‘winner’ overall, coupling the model with changes in demography and small‐scale habitat suitability resulted in a matrix of stable, declining, and increasing patches. For populations predicted to experience declines or increases in abundance due to changes in habitat suitability, altered fecundity and survival rates can reverse projected population trends.  相似文献   

3.
Expanding high‐elevation and high‐latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south‐central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land‐use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow‐covered tundra areas. The positive climate feedback of high‐latitude and high‐elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.  相似文献   

4.
We forecasted potential impacts of climate change on the ability of a network of key sites for bird conservation (Important Bird Areas; IBAs) to provide suitable climate for 370 bird species of current conservation concern in two Asian biodiversity hotspots: the Eastern Himalaya and Lower Mekong. Comparable studies have largely not accounted for uncertainty, which may lead to inappropriate conclusions. We quantified the contribution of four sources of variation (choice of general circulation models, emission scenarios and species distribution modelling methods and variation in species distribution data) to uncertainty in forecasts and tested if our projections were robust to these uncertainties. Declines in the availability of suitable climate within the IBA network by 2100 were forecast as ‘extremely likely’ for 45% of species, whereas increases were projected for only 2%. Thus, we predict almost 24 times as many ‘losers’ as ‘winners’. However, for no species was suitable climate ‘extremely likely’ to be completely lost from the network. Considerable turnover (median = 43%, 95% CI = 35–69%) in species compositions of most IBAs were projected by 2100. Climatic conditions in 47% of IBAs were projected as ‘extremely likely’ to become suitable for fewer priority species. However, no IBA was forecast to become suitable for more species. Variation among General Circulation Models and Species Distribution Models contributed most to uncertainty among forecasts. This uncertainty precluded firm conclusions for 53% of species and IBAs because 95% confidence intervals included projections of no change. Considering this uncertainty, however, allows robust recommendations concerning the remaining species and IBAs. Overall, while the IBA network will continue to sustain bird conservation, climate change will modify which species each site will be suitable for. Thus, adaptive management of the network, including modified site conservation strategies and facilitating species' movement among sites, is critical to ensure effective future conservation.  相似文献   

5.
Climate change influences species distribution and is regarded as a major threat to biodiversity. Hornbills (Family: Bucerotidae) are large tropical birds in Asia and Africa. They are seed dispersers known as forest farmers because they help maintain the ecological community structure by allowing forest regeneration. They are keystone species, and their presence in a forest implies a healthy ecosystem. Range shifts due to climate change is a serious threat because their long-term survival is already imperilled by anthropogenic disturbances. This study models the current and future potential climatic niches of eight of the nine hornbill species present in India. We used GBIF-mediated species presence records along with eight WorldClim V2.1 bioclimatic variables to model the current climatically suitable areas and projected it into the future (mid-century, i.e., 2041–60 and end of the century, i.e., 2081–2100) for different CMIP6 based Shared Socioeconomic Pathway (SSPs) (i.e., SSP126, SSP245, 370 and 585). Range shifts, centroid changes, and the impact of current land use practices for each of the eight species under various climatic conditions were also examined. The Area Under Curve (AUC) values for final models ranged between 0.736 and 0.994. Result indicates that majority of species' climatic niche shift is towards the west, followed by northwest and northern shifts. The species are expected to lose >40% of their suitable present climatic niche under the SSP 585 scenario in 2081–2100. Natural areas were found to be climatically suitable for hornbills throughout the study area, implying the merit of conserving their existing habitats. Our research provides detailed information on how the distribution of Indian Hornbills may change because of future climatic conditions. Detailed spatial and temporal distribution and range shift patterns will aid in a targeted approach for conserving hornbills and their habitat in a changing climate.  相似文献   

6.
Over the past few decades, land-use and climate change have led to substantial range contractions and species extinctions. Even more dramatic changes to global land cover are projected for this century. We used the Millennium Ecosystem Assessment scenarios to evaluate the exposure of all 8,750 land bird species to projected land-cover changes due to climate and land-use change. For this first baseline assessment, we assumed stationary geographic ranges that may overestimate actual losses in geographic range. Even under environmentally benign scenarios, at least 400 species are projected to suffer >50% range reductions by the year 2050 (over 900 by the year 2100). Although expected climate change effects at high latitudes are significant, species most at risk are predominantly narrow-ranged and endemic to the tropics, where projected range contractions are driven by anthropogenic land conversions. Most of these species are currently not recognized as imperiled. The causes, magnitude and geographic patterns of potential range loss vary across socioeconomic scenarios, but all scenarios (even the most environmentally benign ones) result in large declines of many species. Whereas climate change will severely affect biodiversity, in the near future, land-use change in tropical countries may lead to yet greater species loss. A vastly expanded reserve network in the tropics, coupled with more ambitious goals to reduce climate change, will be needed to minimize global extinctions.  相似文献   

7.
Climate change and atmospheric deposition of nitrogen (N) and sulfur (S) are important drivers of forest demography. Here we apply previously derived growth and survival responses for 94 tree species, representing >90% of the contiguous US forest basal area, to project how changes in mean annual temperature, precipitation, and N and S deposition from 20 different future scenarios may affect forest composition to 2100. We find that under the low climate change scenario (RCP 4.5), reductions in aboveground tree biomass from higher temperatures are roughly offset by increases in aboveground tree biomass from reductions in N and S deposition. However, under the higher climate change scenario (RCP 8.5) the decreases from climate change overwhelm increases from reductions in N and S deposition. These broad trends underlie wide variation among species. We found averaged across temperature scenarios the relative abundance of 60 species were projected to decrease more than 5% and 20 species were projected to increase more than 5%; and reductions of N and S deposition led to a decrease for 13 species and an increase for 40 species. This suggests large shifts in the composition of US forests in the future. Negative climate effects were mostly from elevated temperature and were not offset by scenarios with wetter conditions. We found that by 2100 an estimated 1 billion trees under the RCP 4.5 scenario and 20 billion trees under the RCP 8.5 scenario may be pushed outside the temperature record upon which these relationships were derived. These results may not fully capture future changes in forest composition as several other factors were not included. Overall efforts to reduce atmospheric deposition of N and S will likely be insufficient to overcome climate change impacts on forest demography across much of the United States unless we adhere to the low climate change scenario.  相似文献   

8.
Aim To move towards modelling spatial abundance patterns and to evaluate the relative impacts of climatic change upon species abundances as opposed to range extents. Location Southern Africa, including Lesotho, Namibia, South Africa, Swaziland and Zimbabwe. Methods Quantitative response surface models were fitted for 78 bird species, mostly endemic (68) or near‐endemic to the region, to model relationships between species reporting rates (i.e. the proportion of checklists reporting a species for a particular grid cell), as recorded by the Southern African Bird Atlas Project, and four bioclimatic variables derived from climatic data for the period 1961–90. With caution, reporting rates can be used as a proxy for abundance. Models were used to project potential impacts of a series of projected climatic change scenarios upon species abundance patterns and range extents. Results Most models obtained were robust with good predictive power. Projections of potential future abundance patterns indicate that the magnitude of impacts upon a proxy for abundance are greater than those upon range extent for the majority of species (82% by 2071–2100). For most species (74%) both abundance and range extent are projected to decrease by 2100. Impacts are especially severe if species are unable to realize projected range changes; when only the area of a species' simulated present range is considered, overall abundance decreases of more than 80% are projected for 19 (24%) of species examined. Main conclusions Our results indicate that projected climatic changes are likely to elicit greater relative changes in species abundances than range extents. For most species examined changes were decreases, suggesting the impacts upon biodiversity are likely generally to be negative. These results also suggest that previous estimates of the proportion of species at increased risk of extinction as a result of climatic change may, in some cases, be under‐estimates.  相似文献   

9.
Climate change is altering phenology and distributions of many species and further changes are projected. Can species physiologically adapt to climate warming? We analyse thermal tolerances of a large number of terrestrial ectotherm (= 697), endotherm (= 227) and plant (= 1816) species worldwide, and show that tolerance to heat is largely conserved across lineages, while tolerance to cold varies between and within species. This pattern, previously documented for ectotherms, is apparent for this group and for endotherms and plants, challenging the longstanding view that physiological tolerances of species change continuously across climatic gradients. An alternative view is proposed in which the thermal component of climatic niches would overlap across species more than expected. We argue that hard physiological boundaries exist that constrain evolution of tolerances of terrestrial organisms to high temperatures. In contrast, evolution of tolerances to cold should be more frequent. One consequence of conservatism of upper thermal tolerances is that estimated niches for cold‐adapted species will tend to underestimate their upper thermal limits, thereby potentially inflating assessments of risk from climate change. In contrast, species whose climatic preferences are close to their upper thermal limits will unlikely evolve physiological tolerances to increased heat, thereby being predictably more affected by warming.  相似文献   

10.
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent‐wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México—NAM) to the projected end‐of‐century climate (2071–2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land‐cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land‐cover types outside the current network of NAM protected areas.  相似文献   

11.
Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.  相似文献   

12.
Patterns of species richness among clades can be directly explained by the ages of clades or their rates of diversification. The factors that most strongly influence diversification rates remain highly uncertain, since most studies typically consider only a single predictor variable. Here, we explore the relative impacts of macroclimate (i.e., occurring in tropical vs. temperate regions) and microhabitat use (i.e., terrestrial, fossorial, arboreal, aquatic) on diversification rates of squamate reptile clades (lizards and snakes). We obtained data on microhabitat, macroclimatic distribution, and phylogeny for >4000 species. We estimated diversification rates of squamate clades (mostly families) from a time‐calibrated tree, and used phylogenetic methods to test relationships between diversification rates and microhabitat and macroclimate. Across 72 squamate clades, the best‐fitting model included microhabitat but not climatic distribution. Microhabitat explained ~37% of the variation in diversification rates among clades, with a generally positive impact of arboreal microhabitat use on diversification, and negative impacts of fossorial and aquatic microhabitat use. Overall, our results show that the impacts of microhabitat on diversification rates can be more important than those of climate, despite much greater emphasis on climate in previous studies.  相似文献   

13.
Fragmented tropical forest landscapes preserve much of the remaining biodiversity and carbon stocks. Climate change is expected to intensify droughts and increase fire hazard and fire intensities, thereby causing habitat deterioration, and losses of biodiversity and carbon stock losses. Understanding the trajectories that these landscapes may follow under increased climate pressure is imperative for establishing strategies for conservation of biodiversity and ecosystem services. Here, we used a quantitative predictive modelling approach to project the spatial distribution of the aboveground biomass density (AGB) by the end of the 21st century across the Brazilian Atlantic Forest (AF) domain. To develop the models, we used the maximum entropy method with projected climate data to 2100, based on the Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) 4.5 from the fifth Assessment Report. Our AGB models had a satisfactory performance (area under the curve > 0.75 and p value < .05). The models projected a significant increase of 8.5% in the total carbon stock. Overall, the projections indicated that 76.9% of the AF domain would have suitable climatic conditions for increasing biomass by 2100 considering the RCP 4.5 scenario, in the absence of deforestation. Of the existing forest fragments, 34.7% are projected to increase their AGB, while 2.6% are projected to have their AGB reduced by 2100. The regions likely to lose most AGB—up to 40% compared to the baseline—are found between latitudes 13° and 20° south. Overall, although climate change effects on AGB vary latitudinally for the 2071–2100 period under the RCP 4.5 scenario, our model indicates that AGB stocks can potentially increase across a large fraction of the AF. The patterns found here are recommended to be taken into consideration during the planning of restoration efforts, as part of climate change mitigation strategies in the AF and elsewhere in Brazil.  相似文献   

14.
Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business‐as‐usual CO2 emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.  相似文献   

15.
The relationships among species'' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species'' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species'' physiology and the geography of climate change will advance assessments of species'' vulnerability to climate change.  相似文献   

16.
Many species are more restricted in their habitat associations at the leading edges of their range margins, but some species have broadened their habitat associations in these regions during recent climate change. We examine the effects of multiple, interacting climatic variables on spatial and temporal patterns of species' habitat associations, using the speckled wood butterfly, Pararge aegeria, in Britain, as our model taxon. Our analyses reveal that this species, traditionally regarded as a woodland‐dependent insect, is less restricted to woodland in regions with warmer winters and warmer and wetter summers. In addition, over the past 40 years of climate change, the species has become less restricted to woodland in locations where temperature and summer rainfall have increased most. We show that these patterns arise mechanistically because larval growth rates are slower in open (i.e. nonwoodland) habitats associated with colder microclimates in winter and greater host plant desiccation in summer. We conclude that macro‐ and microclimatic interactions drive variation in species' habitat associations, which for our study species resulted predominantly in a widening of habitat associations under climate change. However, species vary in their climatic and nonclimatic requirements, and so complex spatial and temporal patterns of changes in habitat associations are likely to be observed in future as the climate changes.  相似文献   

17.
How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071–2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5‐EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4‐GEM2‐ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change.  相似文献   

18.
Anticipating species movement under climate change is a major focus in conservation. Bioclimate models are one of the few predictive tools for adaptation planning, but are limited in accounting for (i) climatic tolerances in preadult life stages that are potentially more vulnerable to warming; and (ii) local‐scale movement and use of climatic refugia as an alternative or complement to large‐scale changes in distribution. To assess whether these shortfalls can be addressed with field demographic data, we used California valley oak (Quercus lobata Nee), a long‐lived species with juvenile life stages known to be sensitive to climate. We hypothesized that the valley oak bioclimate model, based on adults, would overpredict the species' ability to remain in the projected persisting area, due to higher climate vulnerability of young life stages; and underpredict the potential for the species to remain in the projected contracting area in local‐scale refugia. We assessed the bioclimate model projections against actual demographic patterns in natural populations. We found that saplings were more constricted around surface water than adults in the projected contracting area. We also found that the climate envelope for saplings is narrower than that for adults. Saplings disappeared at a summer maximum temperature 3 °C below that associated with adults. Our findings indicate that rather than a complete shift northward and upward, as predicted by the species bioclimate model, valley oaks are more likely to experience constriction around water bodies, and eventual disappearance from areas exceeding a threshold of maximum temperature. Ours is the first study we know of to examine the importance of discrete life stage climate sensitivities in determining bioclimate modeling inputs, and to identify current climate change‐related constriction of a species around microrefugia. Our findings illustrate that targeted biological fieldwork can be central to understanding climate change‐related movement for long‐lived, sessile species.  相似文献   

19.
Driven by climate change, marine biodiversity is undergoing a phase of rapid change that has proven to be even faster than changes observed in terrestrial ecosystems. Understanding how these changes in species composition will affect future marine life is crucial for conservation management, especially due to increasing demands for marine natural resources. Here, we analyse predictions of a multiparameter habitat suitability model covering the global projected ranges of >33,500 marine species from climate model projections under three CO2 emission scenarios (RCP2.6, RCP4.5, RCP8.5) up to the year 2100. Our results show that the core habitat area will decline for many species, resulting in a net loss of 50% of the core habitat area for almost half of all marine species in 2100 under the high-emission scenario RCP8.5. As an additional consequence of the continuing distributional reorganization of marine life, gaps around the equator will appear for 8% (RCP2.6), 24% (RCP4.5), and 88% (RCP8.5) of marine species with cross-equatorial ranges. For many more species, continuous distributional ranges will be disrupted, thus reducing effective population size. In addition, high invasion rates in higher latitudes and polar regions will lead to substantial changes in the ecosystem and food web structure, particularly regarding the introduction of new predators. Overall, our study highlights that the degree of spatial and structural reorganization of marine life with ensued consequences for ecosystem functionality and conservation efforts will critically depend on the realized greenhouse gas emission pathway.  相似文献   

20.
Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis‐ and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modeling environmental niche‐based changes to their dietary guild structure under 0, 500, and 2000 km‐dispersal distances. We examined guild structure changes at coarse (primary, high‐level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co‐occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad‐scale niche‐based redistribution of species, these are projected to change very heterogeneously. A nondispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high‐level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increase. Further exploration into the consequences of these significant broad‐scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号