首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency.  相似文献   

2.
Highly efficient phage-based Escherichia coli homologous recombination systems have recently been developed that enable genomic DNA in bacterial artificial chromosomes to be modified and subcloned, without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombinogenic engineering or recombineering, is efficient and greatly decreases the time it takes to create transgenic mouse models by traditional means. Recombineering also facilitates many kinds of genomic experiment that have otherwise been difficult to carry out, and should enhance functional genomic studies by providing better mouse models and a more refined genetic analysis of the mouse genome.  相似文献   

3.
Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety.  相似文献   

4.
Recombineering is a widely-used approach to delete genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of “scar” DNA into the chromosome. Here, we describe a rapid, efficient, PCR-based recombineering method, FRUIT, that can be used to introduce scar-free point mutations, deletions, epitope tags, and promoters into the genomes of enteric bacteria. The efficiency of FRUIT is far higher than that of the most widely-used recombineering method for Escherichia coli. We have used FRUIT to introduce point mutations and epitope tags into the chromosomes of E. coli K-12, Enterotoxigenic E. coli, and Salmonella enterica. We have also used FRUIT to introduce constitutive and inducible promoters into the chromosome of E. coli K-12. Thus, FRUIT is a versatile, efficient recombineering approach that can be applied in multiple species of enteric bacteria.  相似文献   

5.
Lambda Red recombineering is a powerful technique for making targeted genetic changes in bacteria. However, many applications are limited by the frequency of recombination. Previous studies have suggested that endogenous nucleases may hinder recombination by degrading the exogenous DNA used for recombineering. In this work, we identify ExoVII as a nuclease which degrades the ends of single-stranded DNA (ssDNA) oligonucleotides and double-stranded DNA (dsDNA) cassettes. Removing this nuclease improves both recombination frequency and the inheritance of mutations at the 3' ends of ssDNA and dsDNA. Extending this approach, we show that removing a set of five exonucleases (RecJ, ExoI, ExoVII, ExoX, and Lambda Exo) substantially improves the performance of co-selection multiplex automatable genome engineering (CoS-MAGE). In a given round of CoS-MAGE with ten ssDNA oligonucleotides, the five nuclease knockout strain has on average 46% more alleles converted per clone, 200% more clones with five or more allele conversions, and 35% fewer clones without any allele conversions. Finally, we use these nuclease knockout strains to investigate and clarify the effects of oligonucleotide phosphorothioation on recombination frequency. The results described in this work provide further mechanistic insight into recombineering, and substantially improve recombineering performance.  相似文献   

6.
Pseudomonas putida has emerged as a promising host for the production of chemicals and materials thanks to its metabolic versatility and cellular robustness. In particular, P. putida KT2440 has been officially classified as a generally recognized as safe (GRAS) strain, which makes it suitable for the production of compounds that humans directly consume, including secondary metabolites of high importance. Although various tools and strategies have been developed to facilitate metabolic engineering of P. putida, modification of large genes/clusters essential for heterologous expression of natural products with large biosynthetic gene clusters (BGCs) has not been straightforward. Recently, we reported a RecET-based markerless recombineering system for engineering P. putida and demonstrated deletion of multiple regions as large as 101.7 kb throughout the chromosome by single rounds of recombineering. In addition, development of a donor plasmid system allowed successful markerless integration of heterologous BGCs to P. putida chromosome using the recombineering system with examples of – but not limited to – integrating multiple heterologous BGCs as large as 7.4 kb to the chromosome of P. putida KT2440. In response to the increasing interest in our markerless recombineering system, here we provide detailed protocols for markerless gene knockout and integration for the genome engineering of P. putida and related species of high industrial importance.  相似文献   

7.
Simulated annealing (SA) is a general-purpose optimization technique widely used in various combinatorial optimization problems. However, the main drawback of this technique is a long computation time required to obtain a good quality of solution. Clusters have emerged as a feasible and popular platform for parallel computing in many applications. Computing nodes on many of the clusters available today are temporally heterogeneous. In this study, multiple Markov chain (MMC) parallel simulated annealing (PSA) algorithms have been implemented on a temporally heterogeneous cluster of workstations to solve the graph partitioning problem and their performance has been analyzed in detail. Temporal heterogeneity of a cluster of workstations is harnessed by employing static and dynamic load balancing techniques to further improve efficiency and scalability of the MMC PSA algorithms.  相似文献   

8.
Recombineering, in vivo genetic engineering using the bacteriophage lambda Red generalized recombination system, was used to create various modifications of a multicopy plasmid derived from pBR322. All genetic modifications possible on the Escherichia coli chromosome and on bacterial artificial chromosomes (BACs) are also possible on multicopy plasmids and are obtained with similar frequencies to their chromosomal counterparts, including creation of point mutations (5-10% unselected frequency), deletions and substitutions. Parental and recombinant plasmids are nearly always present as a mixture following recombination, and circular multimeric plasmid molecules are often generated during the recombineering.  相似文献   

9.
Recombineering technology permits flexible engineering of large DNA in Escherichia coli without dependence on suitably placed restriction sites. However, recombineering is limited for modifying highly repetitive DNA because of its potential to trigger instability by uncontrolled self-recombination of the repeats. In this study, induction of the recombineering enzymes and growth condition of the host are optimized to demonstrate intact modification of bacterial artificial chromosomes (BACs) containing long arrays of centromeric alpha satellite repeats. This optimized recombineering protocol may be useful for manipulation of other biologically important repetitive DNAs, including trinucleotide repeat expansions and homologous gene families, to facilitate their functional studies.  相似文献   

10.
The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications.  相似文献   

11.
High efficiency recombineering in lactic acid bacteria   总被引:1,自引:0,他引:1  
The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria.  相似文献   

12.
Precise and fluent genetic manipulation is still limited to only a few prokaryotes. Ideally the highly advanced technologies available in Escherichia coli could be broadly applied. Our efforts to apply lambda Red technology, widely termed ‘recombineering’, in Photorhabdus and Xenorhabdus yielded only limited success. Consequently we explored the properties of an endogenous Photorhabdus luminescens lambda Red-like operon, Plu2934/Plu2935/Plu2936. Bioinformatic and functional tests indicate that Plu2936 is a 5’-3’ exonuclease equivalent to Redα and Plu2935 is a single strand annealing protein equivalent to Redβ. Plu2934 dramatically enhanced recombineering efficiency. Results from bioinformatic analysis and recombineering assays suggest that Plu2934 may be functionally equivalent to Redγ, which inhibits the major endogenous E. coli nuclease, RecBCD. The recombineering utility of Plu2934/Plu2935/Plu2936 was demonstrated by engineering Photorhabdus and Xenorhabdus genomes, including the activation of the 49-kb non-ribosomal peptide synthase (NRPS) gene cluster plu2670 by insertion of a tetracycline inducible promoter. After tetracycline induction, novel secondary metabolites were identified. Our work unlocks the potential for bioprospecting and functional genomics in the Photorhabdus, Xenorhabdus and related genomes.  相似文献   

13.
Dhar MK  Kaul S  Kour J 《Plant cell reports》2011,30(5):799-806
Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, “top-down” or “bottom-up” have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals.  相似文献   

14.
Bacterial artificial chromosome (BAC) has the capacity to clone DNA fragments in excess of 300 kb. It also has the considerable advantages of stable propagation and ease of purification. These features make BAC suitable in genetic research, such as library construction, transgenic mice production, and gene targeting constructs. Homologous recombination in Escherichia coli, a process named recombineering, has made the modification of BACs easy and reliable. We report here a modified recombineering method that can efficiently mediate the fusion of large DNA fragments from two or more different BACs. With the introduction of kanamycin-resistant gene and proposed rare-cutting restriction endonuclease (RCRE) sites into two BACs, a 82.6-kb DNA frament containing the inverted human α-globin genes (ϑ, α1, α2, and ζ) from BAC191K2 and the locus control region (LCR) of human β-globin gene locus (from the BAC186D7) was reconstructed. This approach for combining different BAC DNA fragments should facilitate many kinds of genomic experiments. These two authors contributed equally to this work.  相似文献   

15.
Interspecific crossing experiments have shown that sex chromosomes play a major role in reproductive isolation between many pairs of species. However, their ability to act as reproductive barriers, which hamper interspecific genetic exchange, has rarely been evaluated quantitatively compared to Autosomes. This genome-wide limitation of gene flow is essential for understanding the complete separation of species, and thus speciation. Here, we develop a mainland-island model of secondary contact between hybridizing species of an XY (or ZW) sexual system. We obtain theoretical predictions for the frequency of introgressed alleles, and the strength of the barrier to neutral gene flow for the two types of chromosomes carrying multiple interspecific barrier loci. Theoretical predictions are obtained for scenarios where introgressed alleles are rare. We show that the same analytical expressions apply for sex chromosomes and autosomes, but with different sex-averaged effective parameters. The specific features of sex chromosomes (hemizygosity and absence of recombination in the heterogametic sex) lead to reduced levels of introgression on the X (or Z) compared to autosomes. This effect can be enhanced by certain types of sex-biased forces, but it remains overall small (except when alleles causing incompatibilities are recessive). We discuss these predictions in the light of empirical data comprising model-based tests of introgression and cline surveys in various biological systems.  相似文献   

16.
Significant efforts have been recently made to obtain the three-dimensional (3D) structure of the genome with the goal of understanding how structures may affect gene regulation and expression. Chromosome conformational capture techniques such as Hi-C, have been key in uncovering the quantitative information needed to determine chromatin organization. Complementing these experimental tools, co-polymers theoretical methods are necessary to determine the ensemble of three-dimensional structures associated to the experimental data provided by Hi-C maps. Going beyond just structural information, these theoretical advances also start to provide an understanding of the underlying mechanisms governing genome assembly and function. Recent theoretical work, however, has been focused on single chromosome structures, missing the fact that, in the full nucleus, interactions between chromosomes play a central role in their organization. To overcome this limitation, MiChroM (Minimal Chromatin Model) has been modified to become capable of performing these multi-chromosome simulations. It has been upgraded into a fast and scalable software version, which is able to perform chromosome simulations using GPUs via OpenMM Python API, called Open-MiChroM. To validate the efficiency of this new version, analyses for GM12878 individual autosomes were performed and compared to earlier studies. This validation was followed by multi-chain simulations including the four largest human chromosomes (C1-C4). These simulations demonstrated the full power of this new approach. Comparison to Hi-C data shows that these multiple chromosome interactions are essential for a more accurate agreement with experimental results. Without any changes to the original MiChroM potential, it is now possible to predict experimentally observed inter-chromosome contacts. This scalability of Open-MiChroM allow for more audacious investigations, looking at interactions of multiple chains as well as moving towards higher resolution chromosomes models.  相似文献   

17.
This article uses a real-life example to illustrate the concept and methodology of recombineering,a revolutionary genetic engineering technique based on phage-mediated homologous recombination.A step-b...  相似文献   

18.
Whereas bacterial artificial chromosomes (BACs) offer many advantages in studies of gene and protein function, generation of seamless, precisely mutated BACs has been difficult. Here we describe a counterselection-based recombineering method and its accompanying reagents. After identifying intramolecular recombination as the major problem in counterselection, we built a strategy to reduce these unwanted events by expressing Redβ alone at the crucial step. We enhanced this method by using phosphothioated oligonucleotides, using a sequence-altered rpsL counterselection gene and developing online software for oligonucleotide design. We illustrated this method by generating transgenic mammalian cell lines carrying small interfering RNA-resistant and point-mutated BAC transgenes. Using this approach, we generated mutated TACC3 transgenes to identify phosphorylation-specific spindle defects after knockdown of endogenous TACC3 expression. Our results highlight the complementary use of precisely mutated BAC transgenes and RNA interference in the study of cell biology at physiological expression levels and regulation.  相似文献   

19.
We present a new concept in DNA engineering based on a pipeline of serial recombineering steps in liquid culture. This approach is fast, straightforward and facilitates simultaneous processing of multiple samples in parallel. We validated the approach by generating green fluorescent protein (GFP)-tagged transgenes from Caenorhabditis briggsae genomic clones in a multistep pipeline that takes only 4 d. The transgenes were engineered with minimal disturbance to the natural genomic context so that the correct level and pattern of expression will be secured after transgenesis. An example transgene for the C. briggsae ortholog of lin-59 was used for ballistic transformation in Caenorhabditis elegans. We show that the cross-species transgene is correctly expressed and rescues RNA interference (RNAi)-mediated knockdown of the endogenous C. elegans gene. The strategy that we describe adapts the power of recombineering in Escherichia coli for fluent DNA engineering to a format that can be directly scaled up for genomic projects.  相似文献   

20.
Microbial natural products among other functions they play a vital role in the disease prevention in humans, animals and plants. Pseudomonas parafulva CRS01-1 is a broad-spectrum antagonistic bacterium present in plants. However, no natural products have been isolated from this strain till date. Corresponding biosynthetic gene clusters to natural products is an effective method for bioprospecting, for which, genome manipulation tools are essential. We previously developed Pseudomonas-specific phage-derived homologous recombination systems for genetic engineering in four Pseudomonas species. Herein, we report the application of these recombineering systems in Pseudomonas parafulva CRS01-1, along with structural elucidation and bioactivity evaluation of natural products. The Pseudomonas recombineering toolbox established before in different four species is efficient for genome mining and bioactive metabolite discovery from more distant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号